
JDJ Feature: Take a Ride on the Infobus Ajit Sagar & John Sigler

Interconnecting JavaBeans in a new component model 8

JDJ Feature: Designing Objects for Jordan Anastasiade

Concurrency: A Meta-level Programming Model
An elegant server component container model 30

Visual Café: The Data Series Alan Williamson

Store information using simple text files & INI file formats 52

Developing 3-Tier Database Applications with Chád Darby

Java Servlets Informative and interactive Web applications 16

An Object Pool Using RMI Steven Schwell

Taking advantage of the Distributed Garbage Collector 56

CORBACorner: Reinventing TCP Based Internet Kim Lau

Protocols in CORBA A solution to inherent shortcomings 48SYS-CON
PUBLICATIONS

Roasting JavaBeans
Java’s Component

Architecture
Ethan Henry pg.5

Creating Java Tools to
Fulfill the “Write Once,

Run Anywhere” Promise
Eric Shapiro pg.7

Under the Sun
JavaBeans™ for the

Service-Driven Network
by Dave Hendricks pg.43

Product Reviews

Object Grid/J
by Ed Zebrowski pg.38

Java Reference
Library

by Ed Zebrowski pg.46

The Grind

New Year’s
Revelations

by Joe S. Valley pg.66

Tips & Techniques

Thread Pooling
by Brian Maso pg.34

Volume:3 Issue:2JavaDevelopersJournal.com

INFOBUS & JAVA APPLICATIONSINFOBUS & JAVA APPLICATIONSINFOBUS & JAVA APPLICATIONS
TM

U.S. $4.95 (Canada $6.95)

Java News
pg.64

Finder Container Factory Meta-Obj Interfaces

Meta Objects

Base-level Object

CLIENT

META LEVEL

ReificationBASE LEVEL

Container

2 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Stingray
Full Page Ad

3VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Protoview
Full Page Ad

4 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Suntest
Full Page Ad

5VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

EDITORIAL ADVISORY BOARD
Ted Coombs, Bill Dunlap, Allan Hess,

Arthur van Hoff, Brian Maso, Miko Matsumura,
Kim Polese, Richard Soley, David Spenhoff

Art Director: Jim Morgan
Executive Editor: Scott Davison
Managing Editor: Gail S. Schultz

Editorial Assistant: Christy Wrightington
Copy Editor: Alix Lowenthal

Technical Editor: Bahadir Karuv
Visual J++ Editor: Ed Zebrowski

Visual Café Pro Editor: Alan Williamson
Product Review Editor: Jim Mathis

Games & Graphics Editor: Eric Ries
Tips & Techniques Editor: Brian Maso

Java Security Editor: Jay Heiser

WRITERS IN THIS ISSUE
Dave Hendricks, Ethan Henry, Kim M. Lau, Brian Maso,

Ajit Sagar, Steven Schwell, Eric Shapiro, John Sigler,
Joe S. Valley, Alan Williamson, Ed Zebrowski,

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.95/issue.

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus air-mail postage

(U.S. Banks or Money Orders).Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Advertising Manager: Claudia Jung
Advertising Sales: Diane Baird

Advertising Assistant: Erin O’Gorman
Marketing Director: Larry Hoffer

Accounting: Jennifer Patterson
Senior Designer: Robin Groves

Web Master: Robert Diamond
Web Designer: Corey Low

Customer Service: Patricia Mandaro
Rae Miranda
Sian O’Gorman

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-1900 Fax: 914 735-3922

Subscribe@SYS-CON.com
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is

published monthly (12 times a year) for $49.00 by SYS-CON
Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Application to mail at Periodicals Postage rates is pending at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1997 by SYS-CON Publications, Inc. All rights reserved. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy or any information storage and retrieval system,

without written permission. For promotional reprints, contact reprint coordinator.
SYS-CON Publications, Inc. reserves the right to revise, republish and authorize its

readers to use the articles submitted for publication.

ISSN # 1087-6944

DISTRIBUTED in USA by

International Periodical Distributors
674 Via De La Valle, Suite 204, Solana Beach, CA92075 619 481-5928

BPA Membership Applied For August, 1996
Java and Java-based marks are trademarks or registered trademarks of

Sun Microsystems, Inc. in the United States and other countries.
SYS-CON Publications, Inc. is independent of Sun Microsystems, Inc.

SYS-CON
PUBLICATIONS

In 1997 there was an explosion of third-
party tools for Java. A variety of integrated
development environments (IDEs), class
libraries and visual components became
available. Web sites that review and catalog
Java tools like Gamelan (http://www.develop-
er.com/directories/pages/dir.java.html) and
JARS (http://www.jars.com) saw their listings
swell. So, what was the key factor that led to
this growth? JavaBeans™.

JavaBeans is the Java component architec-
ture standard. It allows developers to create
components and expose their capabilities in a
consistent, standardized manner. JavaBeans is
in many ways comparable to other component
architectures, like Microsoft’s
COM/OLE/ActiveX for Windows. Unlike OLE,
however, it is specific to one language, Java,
and not to any one operating system.

The JavaBeans specification was
announced by Sun at the first JavaOne con-
ference in May of 1996. The announcement
came along with announcements for a num-
ber of other APIs – the Media APIs (Java 2D,
Java 3D), RMI, Security, Commerce – but Jav-
aBeans was the focus of most of JavaSoft’s ini-
tial development effort. The JavaBeans speci-
fication was completed ahead of schedule
(October ’96) and was released to the world
as part of the Java 1.1 core API in February
1997. From the amount of effort JavaSoft put
into it, it was obvious that they felt that a
robust, well-designed component architec-
ture was key to Java’s future success.

The inclusion of JavaBeans as a core Java
API has opened the door to the third-party
components market. All of the major Java
IDE vendors have made Beans support an
integral part of their strategies. Beans gives
the IDEs the ability to deal with compo-
nents, both visual and non-visual, in a stan-
dard way based on core Java APIs. Any one
of the IDEs could have come up with a spec-
ification like JavaBeans by themselves, but
the fact that Beans is a standard, core API
makes it more attractive than a proprietary,
single-vendor solution. With the availability
of an open component standard that was
supported in multiple IDEs, component ven-
dors rushed to adopt Beans. Although none
of the IDEs support every JavaBeans feature,
the level of support is amazing for a lan-
guage that’s just approaching its third birth-
day. JavaBeans has been a big win for IDE
and tool vendors but ultimately the biggest
win is for developers who can feel free to
choose their tools and development envi-
ronments without worrying whether or not
they’ll all work together.

While JavaBeans has been great so far, it
isn’t finished by any means. The ‘Glasgow’
specification maps out the immediate future
for Beans with three much needed additions
to the specification: the Containment and Ser-
vices protocol, the drag and drop API and the
JavaBeans Activation Framework. These new
pieces of functionality, most of which will be
provided in the upcoming Java 1.2 release,
will make Java an even more compelling plat-
form for application developers.

The ability to do integrated drag and drop
operations with the desktop OS, the ability for
Beans to interact better with other tools at
design time (via the Containment and Ser-
vices protocol) and the ability for Java pro-
grams to exchange self-describing data
objects will attract more and more develop-
ers, perhaps even pulling some of them away
from more established RAD software building
tools.

There’s still more that needs to be done
after ‘Glasgow’ though. Part of the original
specification was an object aggregation and
delegation model that would allow Bean devel-
opers to construct Beans out of other Beans
with a standard way to expose the internal
Beans to the outside world. This would allow
Bean vendors to create Beans that are more
powerful, yet simpler to use and understand.
Another major change that should be made is
that in order to support this sort of function-
ality, IDEs are going to have to move away
from their current methods of handling Jav-
aBeans through code generation alone and
add a serialization-based mechanism in order
to support a number of the JavaBean features
that they’re currently missing, like support for
Bean customizers. A number of JavaBean ven-
dors have been pushing for this change, but
the IDEs haven’t shown any signs of moving
yet.

Overall, JavaBeans has been the most
important new API to come along for Java
since the initial Java 1.0 release. In the three
years since its release, Java has gone from
being an interesting toy language to a serious,
industrial-strength development platform
largely because of the capabilities offered by
JavaBeans. If you’re not using JavaBeans in
your Java development, ask yourself – why
not?

About the Author
Ethan Henry is the Java Evangelist at KL Group. He
spreads the good news about Java and KL Group's
Java components and tools. Before joining KL Group,
Ethan was a Java instructor. Ethan can be reached at
egh@klg.com

Roasting JavaBeans-
Java's Component Architecture

GUEST EDITORIAL

Ethan Henry

6 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Zero G
Full Page Ad

7VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

PHONE, ADDRESS
& WEB DIRECTORY

CALL FOR SUBSCRIPTIONS

1800 513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922

E-Mail: Subscribe@SYS-CON.com
http://www.SYS-CON.com

MAIL All Subscription Orders or
Customer Service Inquiries to

SYS-CON Publications, Inc.
39 E. Central Ave.

Pearl River, NY 10965 – USA

EDITORIAL OFFICES
Phone: 914 735-1900

Fax: 914 735-3922

ADVERTISING & SALES OFFICE
Phone: 914 735-0300

Fax: 914 735-7302

CUSTOMER SERVICE
Phone: 914 735-1900

Fax: 914 735-3922

DESIGN & PRODUCTION
Phone: 914 735-7300

Fax: 914 735-6547

DISTRIBUTED in the USA by
International Periodical Distributors

674 Via De La Valle, Suite: 204
Solana Beach, CA 92075

Phone: 619 481-5928

Worldwide Distribution by
Curtis Circulation Company

739 River Road,
New Milford NJ 07646-3048

Phone: 201 634-7400

SYS-CON
PUBLICATIONS

����
����
����

QQQQ
QQQQ
QQQQ

¢¢¢¢
¢¢¢¢
¢¢¢¢

DEVELOPER’S

JOURNAL

Imagine Henry Ford developing the first widely available automobile. He was a pioneer,
engaged in the most exciting new industry of the time.

Imagine how frustrated he must have been. Where would drivers buy gas? Were the
wrenches and screwdrivers advanced enough to build the cars? Would the cars hold up on
the variety of roads out there? How would he ship the cars? And… would anybody buy
them?

Nearly 100 years later, Java developers are pioneers all over again. It is an exciting time,
but there are new obstacles to deal with. Instead of wrenches and screwdrivers, we use
compilers and debuggers. Instead of gas, we use the AWT and JFC. And instead of roads,
we run our programs on a variety of Java VMs. And we’re still wondering what the right
market is for our new software.

For Java developers, all phases of product development are complex. While native
developers only need to cope with making their code work with mature compilers and
APIs, Java developers must tame nascent technologies at every stage of development.
When our software doesn’t work, we can’t be certain if we’ve coded something wrong, the
compiler generated bad output, the APIs have bugs or the Java VM has an incompatible
implementation.

Take Java VMs as an example. VM vendors are juggling features and compatibility, to
the growing frustration of developers. Every VM does things differently, whether it’s the
implementation of the Abstract Windowing Toolkit or security management. These incon-
sistencies make it difficult to achieve the “write once, run anywhere” promise.

Current compilers and integrated development environments add to the frustration.
The latest IDEs often lack many features of their native counterparts and fail to integrate
the newest Java technologies. How many IDEs implement JavaBeans introspection, pre-
senting a “customizer” if available, and linking events to listeners? And how many have
integrated debuggers that can handle complicated, multi-threaded code? Not many.

But the situation is improving. Sun’s recently announced Java Porting Centers hopeful-
ly will establish a common codebase for Java VMs and improve compatibility. It’s still not
enough though, and we should insist that all Java VMs be 100% compatible with each
other.

The Java APIs are improving as well. While the AWT was quirky and needed adjust-
ment for each platform’s specific graphical user interface, the Java Foundation Class-
es eliminate most inconsistencies – a giant step in the right direction.

But Java tools still need improvement. Java developers shouldn’t have to work with
compilers that crash or IDEs that only partially support the Java APIs. Compilers must
work perfectly every time. I can’t tell you how many times I’ve seen people resort to the
command line JDK tools since their “paid for” tools crash or are incompatible. It just
proves the point that compatibility is far more important than features.

As Java developers, we need to help send this message to the Java VM vendors, IDE ven-
dors and everyone else working with Java. We need to insist on core functionality with
robust compatibility and completeness – before we ask for cool new features.

It’s a whole new industry – we should treat it that way. Just imagine if the first Fords had
saddles for seats and ropes instead of parking brakes… we’d probably still be wearing
spurs in our fancy new sports cars.

About the Author
Eric Shapiro is co-founder and Director of Zero G Software, Inc., which produces several specialized installer
tools for the Java enterprise and developer markets and provides Java installation-related consulting services.

Creating Java Tools to
Fulfill the “Write Once,
Run Anywhere” Promise

FROM THE INDUSTRY

Eric Shapiro

Buyer’s GuideBuyer’s Guide
P d & S i

Java Developer’s Journal
http://www.JavaDevelopersJournal.com

Web-Pro Developer’s Supplement

National Java Learning Center, Inc.

JDJ Buyer’s Guide
JavaBuyersGuide.com

VRML Developer’s Journal
VRMLJournal.com

8 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Components transcend the programming lan-
guage and support a very high degree of reuse. They
greatly simplify the construction of large and compli-
cated software architectures. One of the main rea-
sons why Java promises such a bright future for the
computing world is because of its inherent support
for component architectures. Some examples of
Java’s component support are JavaBeans™, Java
Foundation Classes (JFC), JavaBeans Activation
Framework (JAF) and the InfoBus.

This article introduces the InfoBus, a specification
for interconnecting JavaBeans by defining the inter-

faces and the protocol for their interaction. First, the
need for a framework like the InfoBus for current Java
architectures is identified. Then the InfoBus, its com-
ponents and the InfoBus API are briefly described.
This is followed by an example that illustrates how to
build an application using the basic elements of the
InfoBus. The article concludes with a discussion on
its current status and future issues.

We assume that you are familiar with Java compo-
nent architecture concepts in general and with the
JavaBeans paradigm in particular. Sources for addi-
tional information are listed where required.

JDJ FEATURE

Take

a Ride

on the

InfoBus
The InfoBus is expected to become a standard framework

for the future of Java enterprise applications
by Ajit Sagar

by Ajit Sagar and John Sigler

9VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

JavaBeans and the Infobus
JavaBeans, Java’s implementation of the

component model, is built mostly using fea-
tures of the language itself. The JavaBeans
model allows developers to construct
applications by connecting components
programmatically and/or visually. The
model consists of an architecture and an
API. These combine to provide a framework
for writing components. Programmatically,
JavaBeans simply enforces a set of design
patterns on top of Java’s existing event
model.

The InfoBus architecture and API were
developed by Lotus Development Corpora-
tion, Inc. and Sun Microsystems, Inc. to
define standards by which a wide range of
Java components acting as data producers
and data consumers can communicate. The
InfoBus facilitates the creation of applica-
tions built from JavaBeans that exchange
data asynchronously within the same Java
Virtual Machine. Hence, the Infobus defines
JavaBeans component interaction within a
single process.

So Why InfoBus?
JavaBeans uses introspection to discov-

er and learn about other Beans at runtime.
This is based on certain design patterns in
the names of methods used for interacting
Beans. Communication between Beans is
achieved via the AWT’s event-response
mechanism.

The InfoBus is meant for a more specific
kind of JavaBeans interaction and its design
adds the following constraints to generic
JavaBeans interaction:

JavaBeans that are loaded by the same
Java class loader can “see” other Beans and
can make direct calls between them. How-
ever, this involves examining the interface
of the other Bean using introspection and,
thus, has substantial overhead. In contrast,
the InfoBus interfaces form a tightly cou-
pled contract between cooperating Beans.
Procedure calls are direct and no inferring
is required.

JavaBeans use the standard
event/response model, where the seman-
tics of the interaction depend upon under-
standing Bean-specific events and then
responding to these events with Bean-spe-
cific callbacks to the event raiser. The
InfoBus interfaces, on the other hand, have
very few events and have an invariant set of

method calls for all components. The
semantics of the data flow are based on the
contents of data that flow across the
InfoBus interfaces, not in the names or
parameters from events, nor in the names
of parameters or blocks.

The InfoBus promotes the notion of data
aware components and supports semantics
that allow data to be communicated in a
canonical format that involves both the
encoding of data and the navigation of the
data structure.

InfoBus in a Nutshell
The InfoBus applications can contain

three types of JavaBeans:
• Data Producers
• Data Consumers
• Data Controllers

As the names suggest, the
Data Producers produce data
and the Data Consumers con-

sume data. The exchange of
data takes place using a data
interchange protocol called the
InfoBus. In an InfoBus applica-
tion, a component may act as a

Data Producer, Data Con-
sumer or both. Data

between InfoBus compo-
nents flows in the form of
named objects called

DataItems. Data Controllers are spe-
cialized components that control the

rendezvous between producers and con-
sumers.

The InfoBus protocol defines the follow-
ing steps for data exchange:
1. The components connect to the InfoBus.

This is called “joining” the Infobus. After
a component has joined the InfoBus, it lis-
tens for bus notifications which are gen-
erated in the form of known events.

2. Data Producer components announce the
availability of new data.

3. Data Consumer components register to
listen for named DataItems. Upon retriev-
ing a DataItem that has been published,
the Data Consumers can retrieve the
encoding of the data values in the form of
a String or a Java object.

4. Consumers can attempt to change the
value of DataItems. Producers enforce a
policy on whether anyone can change
data. The data change notifications take
place using named events.

5. The components can disconnect from the
InfoBus. This is called “leaving” the
InfoBus.

InfoBus Events
The InfoBus specification 0.04a, which

has been used for the example application
in this article, defines one event called

10 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

DataItemChangedEvent. The InfoBus com-
ponents, i.e., Data Producers and Con-
sumers, access the data by calling methods
on the InfoBus. These methods are listed in
Table 1.

The InfoBus API
This section provides a brief introduc-

tion to the main interfaces of the InfoBus
API. For specific API details, please refer to
the JavaBeans Web site at
http://java.sun.com/beans/infobus/Pack-
age-javax.infobus.html

The InfoBus API has two major interface
groups. The first is concerned with the ren-
dezvous or brokering mechanism for
announcing and locating data items within
an InfoBus. The major rendezvous classes
are shown in Table 2.

The other group of interfaces includes
data items that are exchanged on the bus
and their associated classes. These have
changed significantly from the earlier
releases. The latest versions are listed in
Table 3.

An InfoBus Example
In this section we will lead the reader

through an example application that illus-
trates the use of the main entities defined in
the Infobus and the interaction between
them. The example uses two applets: One is
a producer of temperature data items and
the other is a consumer of these same data
items. Both are displayed on a single Web
page and they communicate across a single
InfoBus. Figure 2 illustrates the building
blocks for the temperature gauge. The
source is provided in Listings 1 and 2.

The producer applet simulates a tem-
perature data source. Initially, it announces
to the InfoBus the availability of a “temper-
ature” data item. The data item then sends
out temperature change notifications to
any listeners.

The other applet is the data consumer. It
is used as a simple control center to display
the current temperature along with a color-
coded background that indicates the state
of the equipment. Green indicates normal
temperature, yellow is a warning and red
indicates overheating.

The producer applet is implemented by
the TemperatureSource class in Listing 1. It
implements an InfoBusDataProducer inter-
face which allows it to announce data items
on an InfoBus. The applet requires access
to both an InfoBusMember and the data
item to be produced, so it also needs to
implement the InfoBusMember interface
and a data item interface. Finally, it also
implements Runnable in order to update
the temperature value in a background
thread.

When the applet’s init() method is

called, the TemperatureSource joins a new
InfoBus, adds itself as a listener for any
InfoBus property changes and then adds a
Label to display the temperature. In the
producer applet, the memberSupport_ data
member handles this as follows:

memberSupport_.joinInfoBus(this);
memberSupport_.addInfoBusListener(this);

The InfoBusMember interface is used
primarily by TemperatureSource to get a
handle to the current InfoBus. The imple-
mentation is delegated to the InfoBusMem-
berImpl class delivered as part of the

InfoBus package. As you go through the list-
ing you will notice that there are several
other methods that InfoBusMembers dele-
gate to the memberSupport_ variable.

Next, in the applet’s start() method, the
TemperatureSource adds itself as a produc-
er on the bus that it just joined. This allows
it to send notifications to listeners when a
data item becomes available.

ib.addDataProducer(this);

At this point, we have a data producer
that is ready to announce data items. The
run() method of the thread that is spawned

Figure 1: How these components play together in the InfoBus

Table 1: InfoBus Events

Table 2: InfoBus Rendezvous Interface

Event Name Description
InfoBusItemAvailableEvent Broadcast on behalf of a producer to let consumers know about

the availability of a new DataItem.
InfoBusItemRevokedEvent Broadcast on behalf of a producer to let consumers know that a

previously available DataItem is no longer available.
InfoBusItemRequestedEvent Broadcast on behalf of a consumer to let producers know about

the need for a particular DataItem.

Interface Name Description
InfoBus The heart of the InfoBus technology. It maintains a list of existing

InfoBus instances, bus members, producers, consumers and
enables communication among them for announcing and locating
data items.

InfoBusDataProducer Used to indicate that an object provides data on the InfoBus. Pro-
ducers announce the availability of new data items

InfoBusDataConsumer Implemented by objects that are seeking data from an InfoBus.
Often these are visual components that will display the data item
but they can also act as filters where they modify the data and
then forward it on to other consumers.

InfoBusMember Members are able to join and leave an InfoBus, as well as change
their current bus

11VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Rogue wave
Full Page Ad

12 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

in the applet’s start() method is used to
announce the temperature data item:

getInfoBus().fireItemAvailable(“Tempera-
ture”, this);

“Temperature” is the name of the data
item while this (i.e., the TemperatureSource)
is passed as the producer of the item. After
this, the program enters a loop in which the
temperature data item is modified every 2
seconds to simulate changes in the data
source. This change occurs in the produc-
er’s setInternalValue() method. Modifying
the data item causes an itemValueChanged()
method to be called on all DataItem-
ChangedListeners (i.e., the consumers).

As mentioned before, the producer
implements the ImmediateAccess interface
which is a DataItem. Therefore, both inter-
faces must be implemented. DataItems have

methods to get the source of the item as well
as methods for adding and removing data
item listeners. The interface also includes a
getTransferable() method which is used to
return a Java Transferable object if other fla-
vors of the data item are available. For our
example, we will just return null.

ImmediateAccess data items are stand-
alone (i.e., non-collection) data items. They
offer access to the underlying data through
getValueAsObject() and getValueAsString()
methods which, in our example, will return
the value of our underlying temperature
value as a Double and String respectively.
ImmediateAccess items also have a setVal-
ue() interface, but in this example we disal-
low consumers attempted temperature
modifications by throwing an InfoBusAc-
cessException inside setValue. We now
have the basic outline of a data producer.

Our data consumer, the Temperature-

Viewer, will receive notifications of “Tem-
perature” data items and then display the
value. Like the producer, the consumer del-
egates to its InfoBusMemberImpl instance
member all InfoBus Member method imple-
mentations.. The applet listens for data
item changes by implementing the
DataItemChangedListener interface. So our
consumer/component applet, Tempera-
tureView, is defined to be:

public class TemperatureViewer extends
Applet

implements InfoBusMember, InfoBusData-
Consumer, DataItemChangedListener {

Like the producer, the consumer joins
the default InfoBus in the applet’s init()
method and then adds an AWT Label to the
applet for visually displaying the tempera-
ture data. In the start() method, we add the
applet as a data consumer and then request
a “Temperature” item. If one is found, we
then update the temperature display.

Updates from the temperature data item
are sent to the TemperatureViewer, a
DataItemChangedListener. This interface
consists of itemValueChanged, item-
SizeChanged() and itemDeleted() methods.
In our example, itemValueChanged() is the
only item changed method of interest and is
implemented as:

public void itemValueChanged (DataItem-
ChangedEvent e) {

setDisplayValue(e.getDataItem());
}

The TemperatureViewer method setDis-
playValue() is used to update our view of
the data item. SetDisplayValue() extracts
the data from the ImmediateAccess data
item and then updates the display. It uses
the ImmediateAccess getPresentation-
String() method as the text for the label.

Program Environment
Figures 3 and 4 show screen captures of

the example. To run the example, you will
need JDK 1.1 or a later version, an InfoBus
implementation and a 1.1-based browser.
The example has been tested with the TP2
implementation (i.e., the 0.04a spec) of the
InfoBus using JDK 1.1.5 on NT 4.0. It should
work with any 1.1 compliant browser and
has been successfully tested with the
Netscape 4.04 (with the JDK 1.1 patch), Hot-
Java 1.0 and the JDK 1.1 appletviewer.

Beginning with JDK 1.2, the InfoBus will
become a standard Java extension. Until
then, you will need to download an InfoBus
implementation from JavaSoft to run the
example locally. An implementation and the
specifications are located at http://java.sun.
com/beans/infobusFigure 2: The building blocks for the temperature gauge

DataItem
Interface Name Description
DataItem The base interface for data items. This is a very lightweight com-

ponent and is the basic data unit for data interchange.
ImmediateAccess An access wrapper class for simple data items which are not col-

lections of other data items. Offers methods to set the data and
extract the data as either a String or an Object.

ArrayAccess Collections of data items organized in a bounded n-dimensional
array.

RowSetAccess A data item to handle basic database table access with support for
modifying, inserting, deleting and cursoring through a table

DbAccess Used for simple lifetime and transaction management of a Rowset
Access data item.

Event-Handling
Interface Name Description
DataItemChangeListener Implemented by data item recipients to handle data item change

notifications.
DataItemChangedEvent The base class of all data item events. Upcoming versions include

specialized value changed, item added, item deleted and item
revoked events.

Table 3: InfoBus Data Interface

13VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Thought Inc
Full Page Ad

14 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Note that due to space restrictions, com-
ments, exception handling and error han-
dling have been removed. A more detailed
explanation of the example and commented
example source can be located either at the
JDJ Web site or the authors’ Web site:
http://cambrian.netin.com/jdj-examples/

Current Status
The InfoBus specification is still evolving.

At the time of this writing, the latest InfoBus
implementation is TP2 which is based upon
the 0.04a specification. The latest spec is 0.06
and the TP3 implementation of this spec
should be out by the time you read this arti-
cle. The 0.06 specification is expected to be
quite close to the final 1.0 release.

The example here is based upon the
0.04a spec. The newer specs have made
some very useful changes to data items
which should make for a much more robust
environment, so we recommend moving to
the newer as soon as possible. The primary
differences you’ll need to adapt to are:
1. Change method signatures; primarily

involves converting DataItem to Object in
most interfaces

2. Use JDK 1.2 collections instead of Collec-
tionAccess and keyed Access interfaces.

3. Implement DataItemChangeManager on
DataItems where you want to allow lis-
teners, and remove the add/removeLis-
tener() methods for the others

4. Check InfoBus and data item naming con-
ventions to make sure they don’t conflict
with the newer versions’ recommenda-
tions.

5. Consider whether other new features are
useful, such as data controllers, security
and new data items

Related Issues
Lotus Development Corporation is using

the InfoBus as the basic building block for a
suite of desktop applications called eSuite.
Sun Microsystems, Inc. is finalizing the
specs for the JavaBeans Activation Frame-
work (JAF), which adds data awareness to
JavaBeans based components. It will be
interesting to see how these technologies
evolve and how they supplement each
other. More information on these may be
found at the following sites:

http://esuite.lotus.com/eSuite/seSuite-
site.nsf
http://java.sum.com/beans/glasgow

Conclusion
In this article we’ve examined a new

Java component model called the InfoBus
which is based on JavaBeans. We looked at
an example application using its main com-
ponents. The InfoBus can be used to build
UI application suites and data-aware archi-

tectures and is expected to become a stan-
dard framework for the future of the Java
enterprise applications.

About the Authors
Ajit Sagar is a member of the technical staff at i2
Technologies, in Dallas, Texas. Ajit has 7 years
of programming experience in C, 3 years in C++
and 1-1/2 years in Java. His focus is on network-
ing, system and application software develop-
ment. To reach Ajit, call 214 860-6906 or e-mail

him at Ajit_Sagar@i2.com

John Sigler is a member of the technical staff at i2
Technologies, Dallas, TX. He has a B.S. in Computer
Science from Texas A&M University. John has 10
years of software development experience and 1-1/2
years in Java.His focus is on UI, system and applica-
tion development. John can be reached at
John_Sigler@i2.com

Figure 3

Figure 4

Ajit_Sagar@i2.com John_Sigler@i2.com

15VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Install shield
Full pg

16 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

JDJ FEATURE

The drive to create a successful Web site
has resulted in Web applications that are
interactive and informative. A wealth of
information is stored in corporate databas-
es and there is a rush to publish this infor-
mation on the Web. Corporations’ tradition-
al client/server applications are being
edged out by Web-based applications. This
occurrence is possible thanks to the uni-
versal client, the Web browser.

This article is the second in a three-part
series on Java servlets. Last month (JDJ,
Vol. 3, Iss. 1), I gave you an overview of the
Java servlet technology and how to migrate
your existing CGI scripts to Java servlets.
This article will not reintroduce those con-
cepts. I assume that you are familiar with
the basics of the Java Servlet API and the
Java Database Connection API.

In this article, you will learn how to build
a 3-tier database application that uses Java

servlets and the Java Data-
base Connection (JDBC). You
will witness the construction
of each tier and understand
the techniques used to create
Java Servlets with database
connectivity.

The Challenge
A prominent public speaker keeps track

of students who attend her Internet semi-
nars. After each seminar, she exchanges
business cards with the interested stu-
dents. She then enters the student data into
her database program.

Instead of entering the data from each
business card, she envisions a Web applica-
tion that would do the work for her. At each
seminar, the Web application is set up on
several Web terminals. Each student regis-
ters at a Web terminal and provides their

name, company, e-mail address, course title
and expectations. The Web application also
has the option to display an updated list of
all students.
3-Tier Solution

The Web application is made up of three
tiers: Web browser, servlet middleware and
database server. The three tiers are illus-
trated in Figure 1.

The first tier uses a Web browser to take
advantage of the installed user base of this
universal client. An HTML form is used for
user-input and the results of the database
query are returned as an HTML page. Using

by Chád Darby

Developing 3-Tier
Database
Applications

Building a Web interface to

an existing corporate database

with Java Servlets

17VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

HTML for user-input and displaying the
data lowers the requirement of the client’s
browser version. This Web application
does not impose the requirement of a Java-
enabled browser with the latest JDK patch.

The second tier is implemented with a
Web server running Java servlets. The Java
servlet is able to access the database and
return an HTML page listing the data.
Please note that Java servlets are not
restricted to Sun Microsystem’s Java Web
Server. You can also use Java servlets with
the following servers: Microsoft IIS,
Netscape FastTrack and Enterprise Server

and O’Reilly WebSite Professional. Servlet
functionality is possible with Live Soft-
ware’s JRun product, http://www.livesoft-
ware.com. Sun’s Java Server page,
http://jserv.javasoft.com, also has a list of
servlet-enabled Web servers.

The third tier is the back-end database
server. The Java servlet can access infor-
mation in the database provided that a
JDBC driver exists. In our situation, the
public speaker’s database is MS-Access so
we can use the JDBC-ODBC driver that is
bundled with the Java Development Kit ver-
sions 1.1 and higher.

Application Interaction
As you can see, the application is parti-

tioned into three different tiers. Figure 2
illustrates the interaction between the dif-
ferent tiers of the application.

Each step of the interaction is described
below.
Step 1:

The user enters information into an
HTML form. The form data is passed to the
Java servlet running on the Web server.
Step 2:

The Java servlet parses the form data
and constructs an SQL statement. The SQL

statement is passed to the
database server using the
Java Database Connection
(JDBC).
Step 3:

The database server exe-
cutes the SQL statement and
returns a result set to the
Java servlet.
Step 4:

The Java servlet processes
the result set and constructs
an HTML page with the data.
The HTML page is then
returned to the user’s Web
browser.

Analyzing the
Database Schema

Our public speaker is cur-
rently storing the student
information in a MS Access
database. The database con-
tains one data table called
Students. The data fields are
defined in Table 1.

Designing the Web
Browser Interface

The browser interface is
composed of a main menu
page. This page presents
the user with the option of
student registration or dis-
playing the students in the
database. HTML code for
the main menu is provided

in Listing 1.

Student Registration Form
The students register using an HTML

form. The form collects name, e-mail
address, company name and other course
information. A snapshot of the student reg-
istration form is given in Figure 3.

Once the user enters their information
then the “Register” button sends the data
to the Java servlet.

Developing the Servlet Middleware
The servlet middleware encapsulates

the business logic of the application. The
servlet parses the form data and constructs
an SQL statement. The SQL statement is
then passed to the database server. After
executing the SQL statement, the database
server returns a result set back to the
servlet. At this time, the servlet processes
the result set and constructs an HTML page
for the user.

The servlet being created is called Stu-
dentDBServlet. The StudentDBServlet has
methods to perform the following func-
tions: initialization, servicing requests, dis-
playing students and registering a student.
Let’s look at each of these functions in
detail.
Initializing the Servlet

In the life cycle of a servlet, the init()
method is called the first time the servlet is
invoked. Listing 3 is the code listing for the
init() method.

For the StudentDBServlet, a database
connection is opened and prepared state-
ments are created for displaying a student
list and registering a student. The database
connection is left open for the lifetime of
the servlet. Depending on your design, you
can open and close a connection for each
SQL query. However, in this application the
database connection is opened only once.
Servicing User Requests

Whenever a servlet is invoked the ser-
vice() method is called. The service()
method is the main entry point for servlets.
However, if this is the first time the servlet
is being invoked, then the init() method is
called followed by the service() method.

The service() method in this application
is used to branch the request to the appro-
priate method. The student registration
form has a hidden field called Register. The
service method checks the value of the Reg-
ister field. If the value is non-null then the
registerStudent() method is called. If the
field does not exist on the HTML page then
a null value is returned. A null value results
in the execution of the displayStudents()
method.
Displaying the Student List

The displayStudents() method encapsu-
lates the business logic to access the data-
base and display the student list. This is
accomplished by using a supporting Stu-

Field Name Data Type Length
ID Autonumber -
LastName Text 50
FirstName Text 50
Email Text 50
Company Text 50
CourseTitle Text 50
CourseLocation Text 50
CourseStartDate Date/Time -

Table 1: Database Schema

18 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

dent class. The code for the Student class is
given in Listing 4.

The Student class has data members to
hold information for one student. The Stu-
dent class also has constructors that can
create an object based on form data or a
database result set. The code below
demonstrates how a student’s last name is
accessed from the form data.

lastName = request.getParameter(“LastName”);

The request object is an instance of
HttpServletRequest. The request object
contains the form data. The form data is
accessed by calling the getParameter()
method and providing the name of the form
field. The student registration form has a
LastName field. Refer to my earlier article in
JDJ for a detailed discussion of accessing
form data with servlets.

The Student class has methods for
accessing its data members and for provid-
ing a string representation of its data. List-
ing 4 contains the code listing for the meth-
ods of the Student class. The toString()
method returns a normal string version of
the data members. The toWebString()
method returns the data as an HTML-for-
matted unordered list. The toTableString()
method returns the data as an HTML-for-
matted table row. These methods are used
to build the student list.

Constructing an HTML page creates the
student list. In the displayStudents()
method of Listing 3, the heading of the
HTML page is created. Next the table head-
ing is created to display the information as
shown below.

The servlet sends a request to the data-
base server to get a list of students. The fol-
lowing SQL statement was prepared in the
init() method.

select * from Students order by LastName;

The SQL statement will return a list of stu-
dents in alphabetical order based on the
last name. The result set is used to create
the body of the HTML table. A while-loop is
created to iterate through each record of
the result set. The code fragment for the
while-loop is:

int rowNumber = 1;
while (dataResultSet.next())
{

aStudent = new Student(dataResult-
Set);

tableBody += aStudent.toTa-
bleString(rowNumber);

rowNumber++;
}

Each record is used to create a new Stu-
dent object. The toTableString() method is
called to get a string representation of the
student data. Recall that the toTa-
bleString() method returns the data as an
HTML-formatted table row.

After the body of the table is construct-
ed the result set is closed. At the bottom of
the Web page, navigation links are provided
to the main menu page.

A large amount of server-side process-
ing has taken place. However, we are not
finished yet. The HTML page must be
returned to the Web browser. This is
accomplished by opening an output stream
on the response object. The response object
is an instance of HttpServletResponse. The
response object is used to respond to the
client. The code for returning the HTML
page to the user is:

PrintWriter outputToBrowser = new
PrintWriter(response.getOutputStream());

response.setContentType("text/html");
outputToBrowser.println(htmlPage);
outputToBrowser.close();

The content-type is set for HTML and
the htmlPage string is returned to the

browser using the println() method. Figure
4 is a sample student list that is returned by
the StudentDBServlet.
Registering A Student

The registerStudent() method creates a
new Student object based on the HTML
form data. The Student object is used to set
the parameters on the SQL statement pre-
pared in the init() method. The code frag-
ment below shows how a parameter is set.

registerStatement.setString(LAST_NAME_POSI-
TION, aStudent.getLastName());

Once all of the parameters are set then
the SQL statement is executed. After the
statement is executed the new student data
is successfully inserted into the database.

A confirmation page is constructed for
the user. The confirmation page contains a
list of the data that was successfully
entered into the database. The
Student.toWebString() method is called to
provide an HTML string for an unordered
list.

Pulling It All Together
At this point, all three tiers of the appli-

Student Name E-mail Company Course Expectations

Figure 1: Three-tier solution

Tier 1

Client
Web Browser

Web Server
w/Java Servlets

Database
Server

Tier 2 Tier 3

Figure 2: Application Interaction

Tier 1

Client
Web Browser

Web Server
w/Java Servlets

1

Database
Server

Tier 2 Tier 3

2

4 3

19VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Greenbrier &
Russell
Full pg

20 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

cation are constructed. Collections of
HTML pages represent the user interface
component for the browser. The only
requirement on the browser is the ability to
display HTML tables. The two leading
browsers available from Microsoft and
Netscape easily satisfy this requirement,
thus making the Web application browser-
friendly.

The back-end database was developed
with Microsoft Access. However, any data-
base could have been used provided that a
JDBC driver was available for the database.
In our scenario, the public speaker was
already tracking student data with MS
Access. The Web application gave her the
ability to access her legacy data and build
on it.

The middleware was the critical piece of
the application. The servlet middleware
encapsulated the business logic and pro-
vided the “glue” between the Web browser
interface and the backend database infor-
mation. The database access was made
possible by using a nice blend of Java-
based technologies: Java Servlet API and
JDBC.

Each of the components in the 3-tier
application can reside on different comput-
ers. The application can easily be distrib-
uted across the network. With the world-
wide reach of the Web browser, a user can
enter information from a networked com-
puter. The Java servlet middleware can
reside on any servlet-enabled Web server.
The servlet can, in turn, interact with any
networked database server in a different
location.

Future Enhancements
This 3-tier Web application allowed stu-

dents to register their student information.
The application also gave the option of dis-
playing an updated student list. However,
the application is by no means complete.
There are a number of enhancements that
can be made to it.

The application can be enhanced to dis-
play students from a specific city, company
or course. A user could create a custom
query to generate the student listing. Also,
the application can be enhanced to allow
remote database administration features
such as updating and deleting student
entries. Currently, the application does not
perform error checking on the form data
entered. Client-side JavaScript can be used
to verify user data. The application does
not consider the case where a student will
attend multiple seminars. The application
can be enhanced to hold multiple course
titles for a student.

Conclusion
This article presented the basic compo-

nents and techniques to build a 3-tier data-
base application. You can use this informa-
tion to quickly and easily build a Web inter-
face to your existing corporate database.
The Java servlet technology coupled with
the Java Database Connection are the key
components in creating a Web application
that is informative and interactive.

Resources
Article Source Code Listings:

http://www.j-nine.com/pubs/dbservlets
Sun Microsystem’s Java Server Page:

http://jserv.javasoft.com
Live Software, JRun 2.0

http://www.livesoftware.com

About the Author
Chád (shod) Darby is a Java consultant for J9 Con-
sulting, www.j-nine.com. He specializes in develop-
ing server-side Java applications and database appli-
cations. In his spare time he enjoys running 10K
races and half-marathons. Chád can be reached at
darby@j-nine.com.

Figure 4: Student List

Figure 3: Student Registration Form

darby@j-nine.com

21VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Phaos
Full pg

22 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Listing 1: HTML code for main menu.
<!-- Main Menu Page: index.html -->
<HTML>
<HEAD>

<TITLE>Student Database Connection</TITLE>
</HEAD>
<BODY>

<CENTER>
<H1>
Student Database Connection (SDBC)</H1></CENTER>

<HR WIDTH="100%">
<H2>
Options</H2>

Register Online!

View the Student List

</BODY>
</HTML>

Listing 2.
<!-- Student Registration page: StudentRegistration.html -->

<HTML>
<HEAD>

<TITLE>Student Registration</TITLE>
</HEAD>
<BODY>

<CENTER>
<H1>
Student Registration</H1></CENTER>

<HR>
<H2>
Instructions</H2>

Enter your information in the fields below.

Press the Register button to enter your information into
the course
database.

<FORM method="GET" action="/servlet/StudentDBServlet">
<CENTER><TABLE BORDER=0 CELLPADDING=5 WIDTH="95%" >
<TR>
<TD WIDTH="36%">First Name </TD>

<TD WIDTH="50%"><INPUT type="text" name="FirstName" size="20"></TD>

<TD WIDTH="43%">Last Name</TD>

<TD WIDTH="57%"><INPUT type="text" name="LastName" size="20"></TD>
</TR>

<TR>
<TD WIDTH="36%">E-Mail </TD>

<TD WIDTH="50%"><INPUT type="text" name="Email" size="20"></TD>

<TD WIDTH="43%">Company</TD>

<TD WIDTH="57%"><INPUT type="text" name="Company" size="20"></TD>
</TR>

<TR>
<TD WIDTH="36%">Course Title</TD>

<TD WIDTH="50%"><SELECT name="CourseTitle" size="1"><OPTION select-
ed value="-- Please Select A Course --">--
Please Select A Course --</OPTION> <OPTION value="Java Intro-
duction">Java
Introduction</OPTION> <OPTION value="Java Database Apps">Java
Database
Apps</OPTION> <OPTION value="Java Network Programming">Java
Network
Programming</OPTION> <OPTION value="Java Distributed Computing
">Java
Distributed Computing</OPTION> <OPTION value="JavaBeans Intro-
duction">JavaBeans
Introduction</OPTION> <OPTION value="JavaBeans for the Enter-
prise">JavaBeans
for the Enterprise</OPTION> <OPTION value="Java Servlets">Java
Servlets</OPTION> <OPTION value="Java AWT & JFC">Java
AWT & JFC</OPTION> </SELECT></TD>

<TD WIDTH="43%">Course Start Date <I>(yyyy-mm-dd)</I></TD>

<TD WIDTH="57%"><INPUT type="text" name="CourseStartDate"
size="20"></TD>
</TR>

<TR>
<TD>Course Location</TD>

<TD><SELECT name="CourseLocation" size="1"><OPTION selected
value="-- Please Select Course Location--">--
Please Select Course Location --</OPTION> <OPTION value="Hous-
ton, TX">Houston,
TX</OPTION> <OPTION value="Washington, DC">Washington,
DC</OPTION> <OPTION value="New York City, NY">New
York City, NY</OPTION> <OPTION value="Los Angeles, CA">Los
Angeles,
CA</OPTION> <OPTION value="Chicago, IL">Chicago,
IL</OPTION> <OPTION value="Atlanta, GA">Atlanta,
GA</OPTION> <OPTION value="Boston, MA">Boston,
MA</OPTION> <OPTION value="Biloxi, MS">Biloxi,
MS</OPTION> </SELECT></TD>

<TD></TD>

<TD></TD>
</TR>
</TABLE></CENTER>

<CENTER><TABLE BORDER=0 CELLPADDING=5 WIDTH="95%" >
<TR>
<TD WIDTH="100%">Course Expectations

<P> <TEXTAREA rows="5" name="Expectations"
cols="66"></TEXTAREA></TD>
</TR>
</TABLE></CENTER>

<CENTER><INPUT type="submit" value="Register"
name="Register"><INPUT type="reset" value="Reset Form"
name="B2"></CENTER>
</FORM>
<HR>
<CENTER>Return to Course Home Page</CEN-
TER>

</BODY>
</HTML>

Listing 3: init() method.
// File: StudentDBServlet.java
// Listing 3
//

23VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Salesvision
Full pg

24 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

import javax.servlet.*;
import javax.servlet.http.*;

import java.sql.*;
import java.io.*;

import shod.register.Student;

/**
* This servlet provides data entry and retrieval of
* student data in a database.
*
* @author Chad (shod) Darby, darby@j-nine.com
* @version 0.6, 5 Jan 1998
*
*/

public class StudentDBServlet extends HttpServlet
{

// data members
protected Connection dbConnection;
protected PreparedStatement displayStatement;
protected PreparedStatement registerStatement;

protected String dbURL = "jdbc:odbc:StudentDatabase";
protected String userID = "";
protected String passwd = "";

protected String CR = "\n";

protected final int LAST_NAME_POSITION = 1;
protected final int FIRST_NAME_POSITION = 2;
protected final int EMAIL_POSITION = 3;
protected final int COMPANY_POSITION = 4;
protected final int EXPECTATIONS_POSITION = 5;
protected final int COURSE_TITLE_POSITION = 6;
protected final int COURSE_LOCATION_POSITION = 7;
protected final int COURSE_DATE_POSITION = 8;

public void init(ServletConfig config) throws ServletException
{

super.init(config);

// use println statements to send status messages to Web
server console

try {
System.out.println("StudentDBServlet init: Start");

System.out.println("StudentDBServlet init: Loading
Database Driver");

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

System.out.println("StudentDBServlet init: Getting a
connection to - " + dbURL);

dbConnection = DriverManager.getConnection(dbURL,
userID, passwd);

System.out.println("StudentDBServlet init: Preparing
display statement");

displayStatement =
dbConnection.prepareStatement("select * from Stu-

dents order by LastName");

System.out.println("StudentDBServlet init: Preparing
register statement");

registerStatement =
dbConnection.prepareStatement("insert into Stu-

dents "
+ "(LastName, FirstName, Email, Company, Course-

Expectations, CourseTitle, CourseLocation, CourseStartDate)"
+ " values (?, ?, ?, ?, ?, ?, ?, ?)");

System.out.println("StudentDBServlet init: End");
}
catch (Exception e)
{

cleanUp();
e.printStackTrace();

}
}

public void service(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException
{

String userOption = null;

userOption = request.getParameter("Register");

if (userOption != null)
{

// hidden form field "Register" was present
registerStudent(request, response);

}
else
{

// simply display the students
displayStudents(request, response);

}
}

public void displayStudents(HttpServletRequest request,
HttpServletResponse response)

{
Student aStudent = null;

try {
// build the html page heading
String htmlHead = "<html><head><title>List of Stu-

dents</title></head>" + CR;

// build the html body
String htmlBody = "<body><center>" + CR;
htmlBody += "<h1>Student List</h1>" + CR;
htmlBody += "<hr></center><p>" + CR;

// build the table heading
String tableHead = "<center><table border width=100%

cellpadding=5>" + CR;
tableHead += "<tr>" + CR;
tableHead += "<th> </th>" + CR;
tableHead += "<th>Student Name</th>" + CR;
tableHead += "<th>E-mail</th>" + CR;
tableHead += "<th>Company</th>" + CR;
tableHead += "<th>Course Expectations</th>" + CR;
tableHead += "</tr>" + CR;

// execute the query to get a list of the students
ResultSet dataResultSet = displayStatement.execute-

Query();

// build the table body
String tableBody = "";

int rowNumber = 1;
while (dataResultSet.next())
{

aStudent = new Student(dataResultSet);
tableBody += aStudent.toTableString(rowNumber);
rowNumber++;

}

dataResultSet.close();

// build the table bottom
String tableBottom = "</table></center>";

// build html page bottom
String htmlBottom = "</body></html>";

25VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Live software
Full pg

26 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

// build complete html page
htmlBody += tableHead + tableBody + tableBottom;
htmlBody += "<p><hr>";
htmlBody += "<center>Return to Course Home Page";
htmlBody += "<p><i>" + this.getServletInfo() +

"</i>";
htmlBody += "</center>";
String htmlPage = htmlHead + htmlBody + htmlBottom;

// now let's send this dynamic data
// back to the browser
PrintWriter outputToBrowser = new

PrintWriter(response.getOutputStream());
response.setContentType("text/html");
outputToBrowser.println(htmlPage);
outputToBrowser.close();

}
catch (Exception e)
{

cleanUp();
e.printStackTrace();

}
}

public void registerStudent(HttpServletRequest request,
HttpServletResponse response)

{
try {

// create a new student based on the form data
Student aStudent = new Student(request);

// set sql parameters
registerStatement.setString(LAST_NAME_POSITION, aStu-

dent.getLastName());
registerStatement.setString(FIRST_NAME_POSITION, aStu-

dent.getFirstName());
registerStatement.setString(EMAIL_POSITION,

aStudent.getEmail());
registerStatement.setString(COMPANY_POSITION, aStu-

dent.getCompany());
registerStatement.setString(EXPECTATIONS_POSITION,

aStudent.getExpectations());
registerStatement.setDate(COURSE_DATE_POSITION, aStu-

dent.getCourseDate());
registerStatement.setString(COURSE_TITLE_POSITION,

aStudent.getCourseTitle());
registerStatement.setString(COURSE_LOCATION_POSITION,

aStudent.getCourseLocation());

// execute sql
registerStatement.executeUpdate();

// build confirmation page
String htmlPage = "<html><head><title>Confirmation

Page</title></head>";

htmlPage += "<body>";
htmlPage += "<center><h1>Confirmation Page</h1></cen-

ter><hr>";
htmlPage += "The following information was entered

successfully";
htmlPage += aStudent.toWebString();

htmlPage += "<hr>";
htmlPage += "<center>Return to Home Page | ";
htmlPage += "View

Student List";
htmlPage += "<p><i>" + this.getServletInfo() +

"</i>";
htmlPage += "</center></body></html>";

// now let's send this dynamic data

// back to the browser
PrintWriter outputToBrowser = new

PrintWriter(response.getOutputStream());

response.setContentType("text/html");
outputToBrowser.println(htmlPage);
outputToBrowser.close();

}
catch (Exception e)
{

cleanUp();
e.printStackTrace();

}
}

public void cleanUp()
{

try {
System.out.println("Closing database connection");
dbConnection.close();

}
catch (SQLException e)
{

e.printStackTrace();
}

}

public void destroy()
{

System.out.println("StudentDBServlet: destroy");
cleanUp();

}

public String getServletInfo()
{

return "<i>Student Registration Servlet, v.06</i>";
}

}

Listing 4: Student class.
// File: Student.java
// Listing 4
//
package shod.register;

import java.sql.*;
import javax.servlet.http.*;

/**
* The Student class has data members to describe
* a student. String methods are available to
* display the data members to the console or Web page.
*
* @author Chad (shod) Darby, darby@j-nine.com
* @version 0.6, 5 Jan 1998
*
*/

public class Student
{

// data members
protected String lastName;
protected String firstName;
protected String company;
protected String email;
protected String courseTitle;
protected String courseLocation;
protected String expectations;
protected java.sql.Date courseDate;

protected final String CR = "\n"; // carriage return

// constructors
public Student()
{
}

27VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ILOG
Full pg

28 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

public Student(HttpServletRequest request)
{

lastName = request.getParameter("LastName");
firstName = request.getParameter("FirstName");
email = request.getParameter("Email");
company = request.getParameter("Company");

String dateString = request.getParameter("CourseStart-
Date");

courseDate = java.sql.Date.valueOf(dateString);

courseTitle = request.getParameter("CourseTitle");
courseLocation = request.getParameter("CourseLocation");
expectations = request.getParameter("Expectations");

}

public Student(ResultSet dataResultSet)
{

try {
// assign data members
lastName = dataResultSet.getString("LastName");
firstName = dataResultSet.getString("FirstName");
email = dataResultSet.getString("Email");
company = dataResultSet.getString("Company");
expectations = dataResultSet.getString("CourseExpecta-

tions");
courseTitle = dataResultSet.getString("CourseTitle");
courseLocation = dataResultSet.getString("CourseLoca-

tion");
courseDate = dataResultSet.getDate("CourseStartDate");

}
catch (SQLException e)
{

e.printStackTrace();
}

}

// accessors
public String getLastName()
{

return lastName;
}

public String getFirstName()
{

return firstName;
}

public String getEmail()
{

return email;
}

public String getCompany()
{

return company;
}

public String getExpectations()
{

return expectations;
}

public String getCourseTitle()
{

return courseTitle;
}

public String getCourseLocation()
{

return courseLocation;
}

public Date getCourseDate()
{

return courseDate;
}

// methods
// normal text string representation
public String toString()
{

String replyString = "";

replyString += "Name: " + lastName + ", " + firstName +
CR;

replyString += "E-mail: " + email + CR;
replyString += "Company: " + company + CR;
replyString += "Course Expectations: " + expectations +

CR;
replyString += "Course Title: " + courseTitle + CR;
replyString += "Course Location: " + courseLocation + CR;
replyString += "Course Start Date: " + courseDate + CR +

CR;

return replyString;
}

// returns data as HTML formatted un-ordered list
public String toWebString()
{

String replyString = "";

replyString += "Name: " + lastName + ", " +
firstName + CR;

replyString += "E-mail: " + email + CR;
replyString += "Company: " + company + CR;
replyString += "Course Expectations: " + expec-

tations + CR;
replyString += "Course Title: " + courseTitle +

CR;
replyString += "Course Location: " + courseLo-

cation + CR;
replyString += "Course Start Date: " + course-

Date + CR;

replyString += "" + CR;

return replyString;
}

// returns data formatted for an HTML table row
public String toTableString(int rowNumber)
{

String replyString = "";
String tdBegin = "<td>";
String tdEnd = "</td>" + CR;

replyString += "<tr>" + CR;
replyString += tdBegin + rowNumber + tdEnd;
replyString += tdBegin + lastName + ", " + firstName +

tdEnd;
replyString += tdBegin + " "

+ email + "" + tdEnd;

replyString += tdBegin + company + tdEnd;
replyString += tdBegin + expectations + tdEnd;
replyString += "</tr>" + CR;

return replyString;
}

}

29VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Mind Q
1/2 Ad

Softech
1/2 Ad

30 Java DEVELOPER’S Journal • VOLUME: 3 ISSUE: 2 http://www.JavaDevelopersJournal.com

in Java
in Java

Designing Objects for
Designing Objects for

Despite extensive development over
many years and significant demonstrated
benefits, the object-oriented paradigm
remains poorly formalized. Several concur-
rent object-oriented languages have been
designed and implemented based on the con-
current object model. However, upon
attempting to apply formal techniques to a
significant application, several well known
shortcomings actually impeded progress dra-
matically right at the outset.

In the second part of our series (JDJ, Vol.
2 Iss. 6), we defined the meaning of the inher-
itance anomaly to describe the conflict
between inheritance and concurrency in
object-oriented languages. It has been proven
that Java at the semantic level is powerful
enough to provide a mechanism for solving
the inheritance anomaly. However, semantic
conflicts often occur using even a simple and
elegant language like Java. The concept of
Meta-Object will be introduced as a method-
ology to obtain a separation of the protocol
from functionality in class definition and an
evaluation framework for a server compo-
nent model will be defined. This part deals
mostly with design topics and leaves imple-
mentation details and performance issues for
future articles.

Reasons for a Meta-Level Approach
Despite their popularity, the basic princi-

ples of object-oriented programming –
encapsulation, inheritance, polymorphism –
are still not used correctly. How do we
implement encapsulation today? The object
fields are private/protected but the object
has better methods like pleaseSetMyPri-
vateData(). I once saw the following code:

public class SplendidEncapsulation {
private String s = “SENSITIVE DATA”;

public void setS
(SplendidEncapsulation anotherObject) {
anotherObject.s = “MODIFY SENSITIVE DATA”;

}
}

Imagine x, y object of type SplendidEn-
capsulation and an invocation of type
y.setS(x). Would you consider using the x
object after y.setS(x) is executed? Personal-
ly, I wouldn’t recommend it. Although the
intention was clearly to set the data of
object y, questionable in itself, the sample
shows how today these hurdles arise from
the current practical software develop-
ment. There is clearly a problem here, as
nothing prevents us from constructing lan-
guage in syntactically correct forms [3],
that could lead to the miserable failure of a
software product. It is obviously a semantic
interoperability problem between object
requester and object provider. Indeed, we
might now wonder how a viable concept
like encapsulation could be enforced.

I believe that making implicit semantics
explicit and accessible at the meta level
would allow semantic forms to be convert-
ed into syntactic forms and thus make them
amenable to automated detection and pos-
sible resolution. Information hiding must be
maintained and the ability to modify the
object state at varying levels of abstraction
must be provided. Various authors have
proposed different solutions, most of them
converging to a meta-level model that will
be explained shortly. A comprehensive
approach relies on design patterns method-
ology [1]. An object has a state, behavior
and identity. The object behavior needs to
change as its state is modified. The State
pattern provides a good conceptual model
and it is a valuable pattern to master

Designing Objects for

in Java

JDJ FEATURE

by Jordan Anastasiade

M e t a - l e v e l
Programming
Model Part 3

Ensuring that
server components
can be deployed
on any system

31VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

because it is a practical way of avoiding
mistakes such as those described in the
SplendidEncapsulation class. However a
StateType object can encapsulate the state-
transition behavior and may be used to pre-
dict the result of an inconsistent state of
the object. Correcting the error using the
State pattern is, however, an important pre-
lude to a formal and comprehensive object
manipulation model. It seems likely that the
use of formal models will become standard
practice in software engineering. It is gener-
ally recognized that no viable model,
describing a self controlled object, can be
designed. Objects are becoming increasing-
ly concurrent and distributed and also, in
many cases, they are also mobile. There-
fore, the semantic models, assuming a
sequential execution context or those not
addressing concurrency and distribution,
will be of limited value.

As you can see, there are many reasons
to consider a fundamental and unified
approach for a new semantic foundation.
To accommodate objects in a newly created
computing environment we need a way to
encapsulate and control not only the object
state (data) but also the object behavior
(methods). Hold on; you may say using
Java and encapsulating object behavior
means having only private/protected meth-
ods. How could I further use my object? In
fact, your object will not be used, at least
not directly. A client object will see only an
object wrapper, a controlling object called
Meta-Object.

Meta-Object
So what is a meta-object? A meta-object

of a base-level object is an object that
defines the semantic of the base-level
object behavior. The client object will never
interact directly with a base-level object.
Instead, the client interacts with an exter-
nal object representation, the meta-object.
The main goal of the new concept of a meta-
object is to separate what an object does –
the base-level implementation – from how
it does it – the object meta-level implemen-
tation.

A clear separation of concerns is defined
in the meta-level programming model.
Thus, the main concern at the base-object
level is to solve the application domain
problem. The meta-object can alter the
computational characteristics of an object
regardless of its base-level semantics. A
passive object, for example a sequential
base-level object, could exhibit a different
behavior into a concurrent environment
without modifying object code. Using the
meta-objects for concurrency control is the
ideal control form since it provides the
most flexible control mechanism [2]. Meta-
objects are responsible for delivering mes-

sages between base-level objects so that
the meta-objects’ implementation can pro-
vide optimal communication protocols and
scheduling policies. The data of a meta-
object is called metadata and it is the base-
level object data representation at its met-
alevel. Even at this earlier stage of the meta
level object model definition, several mech-
anisms might be beneficial to us. A meta-
object may inspect the state of a base-level
object within its execution environment
and free us from writing object code which
depends on one particular computational
system. Eventually you ought to deal with
concurrency, security, distribution and
other services, but only once at the meta-
object level.

How could a base-level object maintain
its state in different contexts of execution?
At this point in our model design, I believe
it is an easy question to answer: The per-
sistence will be implemented at the meta-
level and it is the responsibility of the meta-
object to maintain the per-
sistence of its base-level
object. As an exercise, let’s
try to find one way of imple-
menting the persistence at
the meta-level. A handle type
object that identifies a meta-
object will solve our prob-
lem; from a meta-object we
can obtain its handle, and
vice-versa, from handle we
can generate the meta-
object. What we need is a
class, let us call it Handle,
that implements java.io.Seri-
alizable. The meta-object
will implement the default
serialization mechanism for
its base-level object, using a symbolic
model for binding its fields in the stream to
the fields in the corresponding base-level
object.

A client that has a reference to a meta-
object can obtain meta-object’s handle by
invoking getHandle() method on the refer-
ence:

ObjectOutputStream stream =
new ObjectOutputStream(…);
MetaObject metaobject = new MetaObject(…);
Handle handle = metaobject.getHandle();
stream.writeObject(handle);

A client can later read the handle for the
storage and will recreate a meta-object ref-
erence from the handle:

ObjectInputStream stream =
new ObjectInputStream(…);
Handle handle = (Handle)stream.readOb-
ject();
MetaObject metaobject =

handle.getMetaObject(…);

Would you recognize the advantage of
redirect serialization through a meta-object
handle? Consider the scenario in which the
parts of technology used by the container
have been replaced or upgraded. The base-
level object can be resurrected because the
client stored only a meta-object handle. It
seems a small gain, but if you think of the
speed of today’s transformations and the
diversity of our technologies, you will real-
ize the advantages of a model that is not
domain-specific. Let me assume that you
agree about the viability of a meta-object
concept. You may ask about a methodology
to check the consistency of a newly created
meta-object. It is a natural question and I
hope the answer will satisfy your concerns.
In order to validate a meta-object we need
to extrapolate the type of base-meta rela-
tionship to another layer. A new kind of
relationship should be established between

our meta-objects and a meta-meta-object if
you wish, that will be called, for simplicity,
object Cluster or Container.
Container: An Object for Controlling
Meta-Objects

To achieve the separation of execution
domain from object programming, defining
meta-objects is a necessary condition but
not sufficient. Recently, it has become evi-
dent that programming by contract at the
interface level is a step in the right direc-
tion, but at the same time we need to define
all the operational constraints into a uni-
form space where the meta-objects live. In
programming, as in life, our list of basic
concerns is open-ended. However, we
should not lose sight of the goal: to define a
unified domain, a context where all the laws
of object existence are simple to express
and apply.

Thus, a container could provide the life
cycle management for each meta-object
component. If you think of the Factory pat-
tern, we already have in place the contain-

“A meta -object

separates what

it does from how

it does it”

32 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

er methodology for
allowing clients to
create meta-objects
inside a container.
The list of basic
constraints can be
extended, including
location control,
failure recovery,
security services
and so on. Effective-
ly implementing a
portability layer, a
container lets us
express design con-
straints and high-
level system prop-
erties in a modular
way, so it provides
a context environ-
ment for meta-
objects. The inter-
action between
base-level objects
and the container is
depicted in Figure
1. The better we
understand the model, the more we will
know how to apply it to the framework for
practical software development. If we are to
understand the model design’s conceptual
simplicity, I need to introduce and define
two terms: reflection and reification.

The ability of a computational system to
reason about and act upon itself is called
reflection. Structural reflection reifies the
organizational aspects of model structure.
You may have studied or used the Java
reflection package or runtime type identifi-
cation in C++ which are implementations of
structural reflection. A base-level object
could be aware of changes at the meta-level
environment using reflection concepts.
Thus, we already have in place a methodol-
ogy for reflecting structures of meta-level
into base-level.

The act of making hidden information
accessible is called reification. The archi-
tectural design of our model implies an
enforced encapsulation not only of base-
level object data, but also of its behavior.
The client would be able to use the compu-
tational algorithms encapsulated in base-
level objects only if the model implements
the reification concept. Let us suppose that
a client wants to obtain some results and it
knows the location of a container satisfying
its demands. The first thing the client has
to do is to invoke a create() on the contain-
er’s factory. The container will invoke a
newInstance() method to create a new
base-level object. The container will call
further a setContext() function to define
the computation environment in which the
base-level object lives, followed by a cre-

ateMetaObject(…); finally, it returns a
meta-object reference to client. The meta-
object exposes all the application-domain
methods of the base-level object but not
the interfaces that allow the container to
manage and control the object. Thus, the
client interacts only with a meta-object, the
external representation of the base-level
object whose behavior is encapsulated and
reified at the meta-level.

The container may implement different
methods on behalf of base-level objects like
restoring their previously stored state or
activating base-level objects and so forth.
Many of these concepts enable a container
to control the execution path regardless of
the underlying operating system. All ser-
vices are available to the client and more
importantly to the base-level object whose
main concern was only to solve the appli-
cation domain-specific problem.

Unfortunately, in software engineering
you cannot validate results purely by prov-
ing theorems. On the other hand, formaliza-
tion still plays a fundamental role in soft-
ware development because you must have
a formal model of a domain before you can
design effective software for that domain.
Measuring the value of a model by its
impact on practical software development
is the only way to find out the viability of
the model.

Server Component Model
As you know, in a traditional client/serv-

er relationship the client application con-
tains graphical presentation/interaction
with the user, algorithms for solving specif-

ic domain problems and data manipula-
tions depending usually on an underlying
operating system. It is natural for such an
application, which has been labeled as fat-
client, to be unreliable, difficult to maintain
and to integrate in any changing computa-
tional environment. I suppose everyone
knows that thin clients are in great demand
nowadays, not as a matter of fashion but as
a normal consequence of a Web-based
computing environment. At least, at the
theoretical level, the multitier concept has
been around for almost a decade. The diffi-
cult part of the transition process is to
define a framework in which the server
components are reusable. The main reason
I introduced to you the meta-level pro-
gramming architecture was to create a
framework for building reusable server
components.

Let’s consider our base-level object as a
Bean [4]. This means that our base-level
objects have attributes that affect their
behavior. The properties of such base-level
objects could be bound, constrained and,
more importantly, customized. Our objects
do not have java.awt.Component as an
ancestor since they are what is called an
invisible Bean. Based on a well-defined pro-
tocol between a Bean and its container, the
model must specify protocol interfaces.
Thus, a server component model should
define not only the basic architecture of a
component, but also should specify the
structure of its interfaces and the mecha-
nisms by which a component interacts
with its container and with other compo-
nents. A typical component representation

Finder Container Factory Meta-Obj Interfaces

Meta Objects

Base-level Object

CLIENT

META LEVEL

ReificationBASE LEVEL

Container

Figure 1: Interaction between base-level objects and container

33VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

will distinguish between components that
are actively transforming data and passive-
ly storing data. The Container itself does
not make service demands on the meta-
objects. The calls a container makes pro-
vide a meta-object with access to container
services and delivers notifications issued
by the component. The container might
also define the ContainerContext object
which gives base-level access to its con-
tainer and most importantly to its meta-
object.

There should be an interface container
that allows a client to do the following:
1. Obtain a factory object that allows a

client to create a new meta-object in the
container

2. Obtain a finder object that allows a client
to look up an existing meta-object in the
container

3. Destroy meta-objects

Eventually, the container insulates the
base-level object from the specifics of an
underlying component server providing a
simple, standard protocol between base-
level objects and a container. Thus, a
client’s view of a base-level object is unaf-
fected by the container and server the
object is deployed in. Therefore, a normal
component server will provide a
scaleable runtime environment for a large
number of concurrently active base-level
objects. An object cached can be shared
by many clients and the performance can
greatly improve for objects which are fre-
quently read but seldom modified. Server
components can be replicated and dis-
tributed across any number of servers to
boost system availability and perfor-
mance.

The model described has a current
implementation in Enterprise JavaBeans
[4], which defines a concrete component
model to support multitier, distributed
object applications.

Conclusion
The meta-level programming concept

generates a simple and elegant server com-
ponent container model. The model
ensures that server components can be
developed once and deployed to any sys-
tem. Even though the container systems
implement their runtime services different-
ly, the interfaces ensure that a server com-
ponent can rely on the underlying system
to provide consistent life cycle, persis-
tence, transaction, distribution and securi-
ty services. In spite of using simple archi-
tectural primitives like reflection and reifi-
cation, the model automates the use of
complex infrastructure services such as
transactions, thread management, and
security checking.

The server component model built using
a meta-level architecture has many advan-
tages. Future articles will demonstrate how
moving data manipulation logic to a server
allows an application to take advantage of
the power of multithreading in Java.

References
1. E. Gamma, R. Helm, R. Johnson, J. Vlis-

sides, “Design Patterns.” Addison-Wesley,
1995

2. D. Lea, “Concurrent Programming in Java
Design Principles and Patterns.” Addison-
Wesley, 1996.

3. J. Gosling , B. Joy, G. Steele, “The Java

Language Specification.” Addison-Wesley,
1996.

4 T. Lorentz “Making Enterprise Java a
Reality.” Java Developer’s Journal, Vol-
ume 2, Issue 12, www.javadevelopers-
journal.com

About the Author
Jordan Anastasiade holds a BS in Architecture and
an MS in Mathematics. He works for Hummingbird
Communications Ltd., focusing on design patterns
using object-oriented techniques in Java. Jordan can
be reached at jordan@hummingbird.com

Bristol
1/2 Ad

jordan@hummingbird.com

34 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

I don’t have to argue the point that the
Java language’s multi-threading capabilities
are great. They’re simple to use and gener-
ic enough to work on a variety of different
implementations. Whether a VM is made to
operate using a single operating system
thread, like Microsoft’s VM, or using native
operating system threads for Java threads,
like Sun’s native threading VM for Solaris,
your Java programs will work. I think that’s
a quiet but powerful feature of Java.

Perhaps it is almost too easy to create
and run background threads in Java. Per-
haps the designers of Java could have
thrown a couple of snafus in there so we
programmers didn’t go quite so hog-wild
sometimes. It can be a problem because a
Java VM can’t support infinite running

threads. In fact, creating a Thread object
and starting it running can be very costly in
terms of memory.

Don’t believe me? Take a look at Listing
1. It’s a simple program that just creates as
many background Threads as you tell it to
on the command-line. Try typing in that
program and running it with 1000, or even
10,000, threads. What you should see is an
OutOfMemoryError appear after not too
long. That’s because each background
thread requires a lot of memory to run. Out-
OfMemoryErrors are particularly nasty
because there’s no verifiable way to recov-
er from them. A program that creates one
too many background threads will find
itself unable to run and basically will just
have to quit.

I really like multi-threaded programs, to
the point that I sometimes (not too often)
run into this problem. For example, if I use
three or four different multi-threaded pack-
ages I’ve created in the past, none of which
had an OutOfMemoryError-type problem
on their own, I may find the combination of
the threads created by the different sub-
systems is just too much for a particular
VM to handle.

The idea of thread pooling should imme-
diately jump to mind. Thread pooling is
when you create a fixed number of back-
ground threads and allow your program to
use just those finite number of threads,
instead of allowing my program objects to
create an infinite number of background
threads willy-nilly. Usually, thread pooling
is used in a client/servant situation. That is,
where a servant object (or collection of
objects) fulfills any number of simultane-
ous client requests.

An unconstrained design would have
each client request handled by an individ-
ual background thread. Listing 2 is an

Presenting a generic thread
manager for thread pooling

Thread Pooling

TIPS & TECHNIQUES

by Brian Maso

Listing 1: UnconstrainedThreadCreator program creates as
many background threads as indicated on the command-
line.
public class UnconstrainedThreadCreator

implements Runnable {
private int m_id;
private static int m_nextId = 1;

public static void main(String[] astrArgs) {
try {

int nThreads = Integer.parseInt(astrArgs[1]);
for(int ii=0 ; ii<nThreads ; ii++)

new UnconstrainedThreadCreator();
return;

} catch (Exception e) {
System.err.println(e);
e.printStackTrace(System.err);

}
}

public UnconstrainedThreadCreator() {
synchronized(getClass()) {

m_id = m_nextId++;
}

(new Thread(this)).start();
}

public void run() {
Thread self = Thread.currentThread();
try {

while(true) {
self.sleep(100);
System.out.println("Thread " + m_id + " looping...");

}
} catch (InterruptedException ie) {
}

}
}

Listing 2: Internet server class with unconstrained thread
creation; one thread is created per client request. (Clien-
tHandler class omited for brevity.)
public class INetServer {

public static void main(String[] astrArgs) {
try {

ServerSocket ss = new ServerSocket(8888);

35VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Java One

36 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

example of an Internet-based service. Each
request comes in the form of a client con-
nection to a particular port on the server
machine (in this case, port 8888). Listing 2
shows what a main server thread would do:
creating a new ClientHandler object and a
new Thread for each client request. This
main thread is susceptible to being over-
whelmed by too many simultaneous client
requests. Too many requests and the nasty
OutOfMemoryError will appear, probably
shutting down the entire server program.

Listing 3 is a ThreadPoolManager class.
This class is used to manage a constrained
number of threads. Each thread managed

by the ThreadPoolManager has a poten-
tially infinite lifetime. Each Runnable
object passed to the ThreadPoolManager
is queued, and when a thread becomes
available to handle the Runnable’s task,
then that thread is used to run the
Runnable’s run() method. This way, a huge
number of Runnable objects can each have
their tasks eventually run without over-
whelming the VM by having too many
simultaneous running threads. Listing 4 is
a replacement for the main thread routine
of the server shown in Listing 2. The only
change is that the new server uses a
ThreadPoolManager’s threads instead of

creating new threads for each client
request.

About the Author
Brian Maso is a programming consultant working out
of California. He is the co-author of The Waite
Group Press’s, “The Java API SuperBible.” Before
Java, he spent five years corralled in the MS Win-
dows branch of programming, working for such nota-
bles as the Hearst Corp., first DataBank, and Intel.
Readers are encouraged to contact Brian via e-mail
with any comments or questions at bmaso@develop-
er.com.

bmaso@developer.com

while(true) {
Socket s = ss.accept();
Client Handler ch = new ClientHandler(

s.getInputStream(), s.getOutputStream());
(new Thread(ch)).start();

}
} catch (Exception e) {

System.err.println(e);
e.printStackTrace(System.err);

}
}

}

Listing 3: ThreadPoolManager class and ManagedThread
class.
public class ThreadPoolManager {

private Vector m_runnableVector;

public ThreadPoolManager(int threadPoolSize) {
m_runnableVector = new Vector(1, 10);

for(int ii=0 ; ii<threadPoolSize ; ii++)
new ManagedThread(this);

}

synchronized void threadWaiting(ManagedThread mt)
throws InterruptedException {

while(0 == m_runnableVector.size())
wait();

Runnable r = (Runnable)m_runnableVector.elementAt(0);
m_runnableVector.removeElementAt(0);
mt.startRunnable(r);

}

public synchronized void start(Runnable r) {
m_runnableVector.addElement(r);
notify();

}
}

class ManagedThread extends Thread {
private ThreadPoolManager m_manager;

ManagedThread(ThreadPoolManager manager) {
m_manager = manager;
start();

}

public void run() {
try {

while(true)
m_manager.threadWaiting(this);

} catch (InterruptedException ie) {
// just quit.

}
}

void startRunnable(Runnable r) {
try {

r.run();
} catch (Exception e) {

// Print out exceptions thrown by Runnables,
// but return normally to allow thread to
// continue handling cliuent requests.
System.err.println("Error running " + r);
System.err.println(e);
e.printStackTrace(System.err);

}
}

}

Listing 4: The Internet server program using thread pool-
ing to handle client requests.
public class INetServer {

public static void main(String[] astrArgs) {
try {

ThreadPoolManager tpm = new ThreadPoolManager(100);
ServerSocket ss = new ServerSocket(8888);

while(true) {
Socket s = ss.accept();
Client Handler ch = new ClientHandler(

s.getInputStream(), s.getOutputStream());
>

/* HERE'S THE ONLY DIFFERENCE */
tpm.start(ch);

}
} catch (Exception e) {

System.err.println(e);
e.printStackTrace(System.err);

}
}

}

37VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Coriolius

38 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Many of the smaller tasks
which Java developers
are required to take on
within a larger project

can take on the air of a
larger project all on their

own. Developing a grid control
can be one of those tasks. Many companies
have responded to this need by creating
their own “plug-and-play” grids for Java
developers to implement in their own pro-
jects. Stingray’s Objective Grid for Java is a
fine example of tools which can enhance a
Java application and shorten design time.
Developers can use the Objective Grid con-
trol anywhere they can use an AWT control,
saving time and effort.

Visually, Objective Grid tends to remind
me of the typical spreadsheet, with rows
and columns to hold the data (see Figure 1).
I can remember when I first saw how Web
pages were created using standard HTML, I
thought to myself that what the Web need-

ed was a way to use spreadsheets with
dropdown combo boxes, listboxes, images,
masked input and buttons. Along came Java
and the door was opened, but it still had its
limitations – the main one of which was the
time it would take to include this function-
ality in an applet or application. Using
Objective Grid, the programmer is able not
only to include these features in their pro-
ject, but also to include editing functions
such as find and replace, undo and redo
and, if the programmer is using the 1.1 ver-
sion of the JDK, even the ability to print.
The grid can also be bound to external data
sources using the JDBC. So what exactly is
Objective Grid/J?

Objective Grid/J is a package of Java
extension classes that implements a user
interface component which displays data in
rows and columns. The user interface is
known as a grid control and enables end-
users to manipulate and edit the data which
is displayed within it. Version 1.2 now

enables developers to give their applets
and applications an Excel-like look and feel.
Objective Grid/J also allows developers
using the latest releases of Visual J++,
Symantec Café, Symantec Visual Café and
Supercede to include grids in their applets
and applications.

Objective Grid includes complete pro-
ject files for the libraries as well as the
demos, including source code for every
class. The Objective Grid package is actual-
ly composed of several groups of Java
extension classes which work together to
create the grid effects mentioned above.
These classes include:
• Drawing Classes: The drawing classes

actually perform the drawing and updat-
ing of cells that are displayed. The base
GXGridCore class is derived from the

Developers can use the Objective Grid Control
anywhere they can use an AWT control,

saving time and effort

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
Objective Grid/J 1.2
Stingray Software Inc.
3000 Aerial Center, Suite 110
Morrisville, NC 27560
Phone: 800-924-4223
Fax: 919 461-9811
Web: http://www.stingray.com
Email: sales@stingray.com
Requirements: Sun’s JDK 1.0 or 1.1
Price: $395

Objective Grid/J 1.2
by Stingray Software, Inc.

PRODUCT REVIEW

by Ed Zebrowski

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

Figure 1: Objective Grid typically looks like a spreadsheet, with rows and columns to hold the data.

39VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Sybex

40 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

AWT Panel class, and classes are provid-
ed to include a binary runtime of
Stingray’s Objective Blend product.

• Control Classes: Grid cells may be any of
a variety of control types; several pre-
built controls are ready to be placed in as
cell types (you can also embed your own
custom controls as cell types).

• Style Classes: The Objective Grid style
classes manage attributes of a cell (or
group of cells) and provide a pre-built dia-
log which is used to modify them.

• Browser Classes: The Browser classes
enable the programmer to browse exter-
nal data sources by overriding some of
the virtual methods.

• JDBC Classes: The JDBC classes provide
grid access to JDBC databases.

• Symantec dbAnywhere Classes: The
Symantec dbAnywhere classes provide
grid access to databases accessed when
using Symantec’s dbAnywhere software.

• Utility Classes: Objective Grid uses many
Java extension classes for internal utility

classes. The uses of the utility classes
include tabbed windows, the undo/redo
architecture, etc. The tabbed panel class
(see Figure 2) showcases a row of tab but-
tons with different Panels associated with
each “tab.” They can be initialized to be
placed at the top of the panel or at the
bottom of the panel, allowing a variety of
uses.

Objective Grid/J also includes an Objec-
tive Grid Guide and a FAQ in Microsoft
Word format. In the Guide are tutorials that
take you through each of the five included
examples:
• FirstGrid (see Figure 3)
• GridApp
• GxdbAnyWhereSample
• GXQuery
• Print_Preview

When you are ready to examine the
examples, you must build the complete
OG/J package. OG/J comes with several pre-
built packages and you have to set your
CLASSPATH environment variable to
include them.

Also included in the Guide is an Objec-
tive Grid and Objective Blend Reference
that covers all the classes in detail. Addi-
tional chapters of the Guide show the pro-
grammer how to add their own controls,
use the Undo and Redo feathers, and how
to decrease the bytecode size of your
applets and applications.

Objective Blend is a package of user
interface components that OG/J utilizes.
The Objective Blend package is included in
OG/J as a runtime package; you can build
your OG/J package with this package. It
comes as a single .zip file which is included
in the lib directory.

Objective Grid enables even the novice
programmer to create full-featured spread-
sheet applications. The majority of the func-
tionality of Objective Grid is automatically
provided directly by the package. Program-
mers who wish further customization can
create classes from the base classes provid-
ed and extend their functionality even more.
This is the type of functionality that pro-
grammers consume hours developing and
even more hours debugging. Products like
Objective Grid can enable an average pro-
grammer to turn out above average applets
and applications. I’d rate this product as a
must-have for serious programmers.

About the Author
Edward Zebrowski is a technical writer based in the
Orlando, FL area. Ed runs his own Web development
company, ZebraWeb, and can be reached on the
net at zebra@rock-n-roll.co

Figure 2: The tabbed panel class showcases a row of tab buttons
with different Panels associated with each “tab.”

Figure 3: The FirstGrid example shows the developer the basics of using Objective Grid. zebra@rock-n-roll.co

41VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

DCI

42 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ADVERTISER INDEXADVERTISER INDEX
Advertiser Page
3D Graphics 27
www.threedgraphics.com 310 553-3313

Bristol Technology 33
www.bristol.com 203 438-6969

Coriolis 37
www.coriolis.com 800 410-0192

DCI 41
www.DCIexpo.com/Internet 508 470-3880

Greenbrier & Russel 19
www.gr.com/java 800 453-0347

IAD 55
www.IADconf.com 508 652-1010

ILOG 49
www.ILog.com 800 367-4564

Imperial 77
www.Imperial.com 415 688-0200

Installshield 15
www.installshield.com 800 269-5216

Intuitive 50
www.intuitivesystems.com 408 245-8540

JavaOne 35
http://java.sun.com 800 668-2741

JavaWorld 67
www.javaworld.com 415 267-4527

Advertiser Page
KL Group Inc. 68
www.klg.com 800 663-4723

Live Software 25
www.livesoftware.com

Marimba 60
www.marimba.com/download 415 328-JAVA

MindQ 29
www.mindq.com 800 847-0904

Net-Developer ’98 45
www.net-developer.com 612 368-7227

Net Guru 42
www.ngt.com 800 know.ngt

Net Guru 54
www.ngt.com 800 know.ngt

Object Expo 61
www.sigs.com 212 242-7515

Object Matter 42
www.objectmatter.com 305 718-9109

Phaos Technology Corporation 21
www.Phaos.com 212 229-1450

ProtoView 3
www.protoview.com 609 655-5000

Roguewave 11
www.roguewave.com 800 487-3217

Advertiser Page
Sales Vision 23
www.salesvision.com 704 567-9111

SofTech Computer Systems 29
www.scscompany.com 814 696-3715

Stingray Software Inc. 2
www.stingsoft.com 800 924-4223

SunTest 4
www.suntest.com 415 336-2005

Sybex Books 39
www.sybex.com 510 523-8233

Symantec 57
cafe.symantec.com 800 453-1059 ext. 9NE5

SYS-CON Publications 27
www.sys.con.com 914 735-1900

SYS-CON Publications 59
www.sys.con.com 914 735-1900

SYS-CON Publications 62
www.sys.con.com 914 735-1900

SYS-CON Publications 63
www.sys.con.com 914 735-1900

Thought, Inc. 13
www.thought.com 415 836-9199

Zero G Software 54
www.zerog.com 415 512-7771

Net
Guru

1/4 Ad

Object
Matter
1/4 Ad

43VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

We are moving towards a world in
which you can expect instant access to
online shopping from a phone; your kids
can always reach you with one number
that bounces from your phone, to your
pager, mail or car; and you pay one low
price each month to your local telco
provider that brings you combined fax,
Internet, local, long distance and cellular
services.

To help providers keep up with these
demands, Sun recently announced the Ser-
vice-Driven Network™, a model that helps
telecommunications providers rapidly
develop and deploy innovative network ser-
vices, and manage the networks over which
they deliver these services.

A key component of
the Service-Driven Net-
work is the Java
Dynamic Management
Kit, a combination of
“push” and Java net-
work management
technologies for build-
ing self-managed net-
works. It is the first
Java-based toolkit for
building and distribut-
ing network manage-
ment intelligence into
system, application
and network devices.

The Java Dynamic
Management Kit is a
Java agent toolkit for
creating JavaBeans
which allows rapid
development of
autonomous Java
agents and will help
telecommunications
providers develop
smart, autonomous
Java agents that can be
distributed through-
out the network to act
as invisible “assis-

tants,” alerting network managers of poten-
tial problems or fixing them on their own.

At the Heart of it All: JavaBeans
for Management

The Java Dynamic Management Kit pro-
vides a library of core management ser-
vices, implemented as JavaBeans compo-
nents, called JavaBeans for Management.
Developers can create their own JavaBeans
for Management, which can be dynamically
distributed to the network. They can be
slotted in and out of an agent, allowing one
to add, modify or cancel services, just as
hardware elements can be slotted in and
out of a rack.

Each JavaBean for Management has a

set of properties, can perform a set of
actions and can emit a set of notifications,
all defined through standard JavaBeans
design patterns. For example, a read-write
property is defined for property “Foo” if
the JavaBean for Management contains
two methods with the following signa-
tures:

public PropertyType getFoo();
public void setFoo(PropertyType value);

A JavaBean for Management is manage-
able as soon as it is registered with the
agent’s Core Management Framework
(CMF). JavaBeans for Management can be
registered and deleted from the CMF
dynamically, which allows transient ser-
vices to be implemented that can be
pushed into the agent and then disappear
once they have finished.

The representation of JavaBeans for
Management as JavaBeans components
enables the developer to access them using
a JavaBeans application builder, such as
Java Workshop or Java Studio. JavaBeans in
an existing Java application can be made

ANYTHING NEW UNDER THE SUN

JavaBeans™ for
the Service-Driven

Network™

by Dave Hendricks

Figure 1: A Java Dynamic Management agent consists of these components, all running
within a Java Virtual Machine (JVM): JavaBeans for Management, Core

Management Framework (CMF), Adaptors for different protocols.

SNMP
Manager

Java Manager

C-Beans

Web
Browser

Core M-Beans

Ja
va

 A
g
en

t

Value Added
M-Beans

SNMP

Core Management Framework
Adaptors

RMI or HTTP HTML

Architecture of a Java Dynamic Management Agent

44 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

manageable simply by
registering them with
the CMF, with no change
to the existing applica-
tion. Note that the Java
Dynamic Management
Kit does not force a Java
class inheritance
scheme on the develop-
er; the developers are
free to develop Jav-
aBeans as they like.

A number of core Jav-
aBeans for Management
which implement gener-
ic management services
are provided in the Java
Dynamic Management
Kit. Only the core Jav-
aBeans for Management
needed by an agent must
be registered with the
CMF. The generic ser-
vices provided include
an object repository,
basic notifications, filter-
ing, monitoring, dynamic
class loading, dynamic
native library loading,
relationships and MLET.

The MLET service
provides a way for an
agent to find JavaBeans
for Management on the
network, pull them into
the agent and start executing them.
Core Management Framework

The Core Management Framework
(CMF) controls the JavaBeans for Manage-
ment in an agent. Whenever an agent is
requested to perform a management opera-
tion, the CMF calls the appropriate Jav-
aBean for Management to perform the
requested operation. A JavaBean for Man-
agement can query the CMF to obtain infor-
mation on other JavaBeans for Manage-
ment present in the CMF.
Adaptors

The JavaBeans for Management and the
CMF are protocol-independent. This prop-
erty frees the developer from having to
work with communication protocols. For an
agent to be manageable, it must include at
least one adaptor which provides access to
the JavaBeans for Management within the
agent through a specific protocol. Adaptors
are provided for HTML, HTTP, RMI and
SNMP. An agent can include more than one
adaptor, allowing a single agent to commu-
nicate via different protocols to different
management applications.

The HTML adaptor includes a small
“Web server” which provides an HTML
view of the JavaBeans for Management
within an agent. This allows the agent to

be managed directly by a standard Web
browser from which the user can see the
JavaBeans for Management within an
agent and perform operations on them.
HTML pages are generated dynamically to
show the requested M-Bean information.
So, with no development required, the
user has a manager application which can
query their Java Dynamic Management Kit
agent.

Service Creation Tools
The Java Dynamic Management Kit also

includes some development tools. Mogen
generates client stubs for JavaBeans for
Management. These stubs are called C-
Beans, or “Client Beans”. C-Beans help
developers build Java management applica-
tions that can talk to an agent through any
protocol (RMI and HTTP are currently sup-
ported). The application developer manipu-
lates the C-Beans as if they were local Jav-
aBeans and the Java Dynamic Management
Kit assures the communication with the
agent.

An SNMP MIB compiler is provided. This
takes an SNMP MIB as input and generates
JavaBeans for Management that can be
plugged into an agent. In essence, the Java
Dynamic Management Kit provides a com-

plete toolkit for the developer who wants to
develop SNMP agents in Java. The develop-
er can also put the HTML adaptor into their
SNMP agent and browse the agent with a
Web browser.

A Java Dynamic Management Kit agent
can be thought of as a container to execute
mobile code. If this container is distributed
among the devices, systems and applica-
tions in a network, one can dynamically
push intelligent services throughout the
network and the Service-Driven Network is
enabled.

For more information on the Java
Dynamic Management Kit, see
http://www.sun.com/software/java-dynam-
ic/

About the Author
Dave Hendricks is the engineering manager of the
TMN and Java Management Products group at Sun
Microsystems' development site in Grenoble, France.
Dave has been with Sun for 11 years and was one
of the founding members of the Grenoble develop-
ment site when it was created in 1990. Dave joined
Sun after receiving BS and MS degrees in Computer
Science from Stanford. At Sun, he initially worked on
source code management tools before moving to
Grenoble and working on X.25 and then network
management.

Figure 2: Java Dynamic Management Kit agent's home page seen through a Web browser

45VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Net
Developer

full

46 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

If you are a Java developer,
you are no doubt familiar
with O’Reilly and Associ-
ates and their line of
books. One of the first
Java books on the market

was O’Reilly's ”Java in a Nut-
shell”. Although there had been a couple of
“how-to” books published, there were no
Java reference books available for the pro-
fessional programmer. The Nutshell series is
not for beginners, but rather for seasoned
code-jockeys who will dog-ear the book in no
time flat. But the funny thing was, even begin-
ners started to sing the praises of the Nut-
shell book.

O’Reilly has taken the “Java in a Nutshell”
book and made something even more valu-
able out of it for Java developers. The new
Deluxe edition not only contains the com-
plete printed book, but it also contains five
additional books in CD-ROM format:
• Java in a Nutshell
• Exploring Java
• Java Language Reference
• Java Fundamental Classes Reference
• Java AWT Reference

The library also comes with a one-year
subscription to the online version of the
Java Reference Library, which may then be
accessed throughout the year. After logging
into the O’Reilly Web site – which requires
you to go through a free registration
process – you must log in further using the
password that is provided on a card inside
the book. In this manner, the books may be
accessed online and the very latest materi-
al may always be accessed. The books may
also be searched so finding information
about a specific topic is a snap.

“Java in a Nutshell”
Part I: Introducing Java

Since the Java Reference Library is based

on the “Java in a Nutshell” book, we’ll take a
detailed look at it here. Although it is not a
book for beginners, it does have a couple of
chapters to get C and C++ programmers up
to speed. The first chapter, Getting Started
With Java, is written for programmers who
have been living in a cave – or so it seems. It
covers exactly what Java is and where it
came from; the usual introductory material.
Most Java programmers will probably skip
this chapter. Chapter 2, How Java Differs
From C, and Chapter 3, Classes and Objects
in Java, are chapters that C++ programmers
will probably devour before moving on to the
meat of the book.
Part II: Introducing Java 1.1

Chapter 4, What’s New in Java 1.1, goes
into a detailed discussion of the 23 packages
that make up the core API for Java 1.1,
explaining the packages and the changes
which have been made. Chapter 5, Inner
Classes and Other New Language Features
explores how the programmer is to define
and utilize each of the four new types of
classes. These two chapters get the pro-
grammer up to date on the changes made in
the latest release. The book approaches
some of the problems that the programmer
is likely to notice upon compilation and
describes how to fix them.
Part III: Programming with the Java 1.1 API

Chapters 6 through 12 discuss the pro-
gramming examples, which use the new fea-
tures of Java 1.1. The examples are yours to
do with as you wish and programmers are
encouraged to adapt them for their own pro-
grams. The applets and applications them-
selves may be downloaded from the Web site
as well. If you’d like to be able to read the
source for these example programs, you’d
better purchase this edition as author David
Flanagan has indicated that he will probably
be taking the example section out altogether
in the next release of the book simply for
space (and cost) reasons. He feels that the

book is already too large and says that he
may even produce another book specifically
on the Java Enterprise APIs which will go into
database connectivity, remote method invo-
cation and the security features of Java 1.1.
Part IV: Java Language Reference

The chapters which make up Part 4 focus
on the very basic information you’ll need to
start coding and include basic reference
material about the Java programming lan-
guage. Chapter 13 contains summary tables
of Java syntax. The rest of Part 4 is stuff that
most programmers will already have down
pat – Java system properties, HTML code for
including applets on a Web page, compiler
options. Always good to have around in case
you wake up one morning after an all night
code session and can’t remember how to
compile your source code.
Part V: API Quick Reference

This section is the core of this book and
takes up the majority of the pages. It provides
the programmer with a quick-reference guide
to the Java API and goes into each of the pack-
ages in detail. Included are chapters on:
• The java.applet Package
• The java.awt Package
• The java.awt.datatransfer Package
• The java.awt.event Package
• The java.awt.image Package
• The java.awt.peer Package
• The java.beans Package
• The java.io Package
• The java.lang Package
• The java.lang.reflect Package
• The java.math Package
• The java.net Package

For seasoned code jockeys, but even
beginners are singing its praises

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
Java Reference Library
Java in a Nutshell
O’Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
Phone: 800 998-9938
Fax: 707 829-0104
Web: http://www.ora.com
Email: info@ora.com
Platforms: Any platform for which there is a JVM
Price: $69.95 each

Java Reference Library
Java in a Nutshell, Deluxe Edition

by O’Reilly & Associates, Inc.

PRODUCT REVIEW

by Ed Zebrowski

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

47VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

• The java.text Package
• The java.util Package
• The java.util.zip Package

Flanagan’s writing style is both technical
and personal at the same time; he introduces
the packages by making the reader familiar
with the basic features, as he does in this
excerpt from Chapter 21:

“The java.awt.image package is, by any
standard, a confusing one. The purpose of
the package is to support image processing,
and the classes in the package provide a
powerful infrastructure for that purpose.
Most of the classes are part of the infrastruc-
ture, however, and are not normally used by
ordinary applications that have only simple
image manipulation requirements.

To understand this package, it is first
important to note that the Image class itself
is part of the java.awt package, not the
java.awt.image package. Furthermore, the
java.awt.image classes are not the source of
images; they simply serve to manipulate
images that come from somewhere else.
The Applet.getImage() method is perhaps
the most common method for obtaining an
image in Java – it downloads the image from
a specified URL. In a stand-alone applica-
tion, the URL.getContent() method can be
used to obtain an ImageProducer object,
which can then be passed to the Compo-
nent.createImage() method to obtain an
Image object.”

One of the great things about the Deluxe
Edition of “Java in a Nutshell” is that not only
can you access the entire text and examples
from the book online, but you can read the
printed version while you’re sipping your
morning coffee. “Java in a Nutshell” is the
best choice O’Reilly could have made for a
printed reference book to go with the CD ver-
sion of the other four books. The first of
these online books, “Exploring Java”, is an
introductory book about the fundamentals of
the Java programming language.

“Exploring Java”
This book, written by Patrick Niemeyer

and Joshua Peck, breaks down the Java lan-
guage, its class libraries, programming tech-
niques and idioms into a readable, easy to
understand format. It also provides realistic,
though simplistic, examples that hint at what
can be done with Java. Chapters include:
• Yet Another Language?
• A First Applet
• Tools of the Trade
• The Java Language
• Objects in Java
• Threads
• Basic Utility Classes
• Input/Output Facilities
• Network Programming
• Understand the Abstract Windowing

Toolkit
• Using and Creating GUI Components
• Layout Managers
• Drawing With the AWT
• Working With Images

Chapter 3, for example, is about the tools
which you need to be familiar with in order to
program in Java. It covers the Java interpreter
and discusses the manner in which it works,
and also goes into how you’ll need to set up
your class path and how to use the JDK com-
piler. It also gives into a detailed explanation
of how to compile Java source code using
Netscape's own interpreter and how to
include applets in your own web pages, along
with all the possible parameters of such.

“Java Language Reference”
“Java Language Reference”, written by

Mark Grand, is a serious reference guide for
Java programmers. It goes into detailed
explanations of how the Java language works
in particular situations. The book does cover
some basic stuff, such as how to compile or
run an applet, etc. It becomes a bit redundant
when it’s combined with the rest of this set.
You’ll probably find yourself referring to this
book but it won't be to find out how to com-
pile your first applet, or how to add an applet
to a Web page. It’s more likely to be when you
are trying to find the answers to specific
questions, such as how Java selects the
method that’s invoked by method call
expressions, or how the multiplication oper-
ator works when using floating-point data.

“Java Language Reference” covers all
aspects of the Java language and includes
small examples where appropriate. It
describes the syntax for all Java statements,
exception handing, multithreaded program-
ming and also contains reference material on
the classes in the java.lang package. Consid-
er this a backup for when you want even
more material than you can instantly find in
the “Java in a Nutshell” book.

“Java Fundamental Classes
Reference”

“Java Fundamental Classes Reference”,
also written by Mark Grand and co-author
Jonathan Knudsen, is the companion book
for the Java Language Reference. It is a refer-
ence for the fundamental, or core, classes of
the Java 1.1 API. That includes all the classes
in the JDK that programmers are likely to
need (not including the AWT, which is cov-
ered in a separate book, the Java AWT Refer-
ence). The following packages are covered,
first with a detailed description of the class
as a whole, then with a complete description
of every variable, constructor and method
which is defined by the class:
• java.io Package
• java.lang Package

• java.lang.reflect Package
• java.math Package
• java.net Package
• java.text Package
• java.util Package
• java.util.zip Package

Other topics include strings and related
classes, threads, exception handling, I/O, net-
working and security. These are discussed in
a tutorial fashion and include examples that
show how to use these features. Since the
entire text is searchable, it makes it very easy
to locate specific information about a core
Java class in a hurry.

“Java AWT Reference”
The “Java AWT (Abstract Window Toolk-

it) Reference”, by John Zukowski, is a book
you’ll want to become familiar with, at least if
you care about what your applet or applica-
tion looks like. The AWT provides the appli-
cation with its graphical user interface (GUI).
This book covers the Java 1.0.2 to Java 1.1
AW, and discusses the differences between
them, including the many changes which
have been made to the method names.
Again, as with the other books in this set,
examples are given as appropriate. Among
other things, the book covers basic graphics,
fonts and colors, events, components and
containers, image processing, errors, data
transfer and printing.

“Java AWT Reference” also has an
appendix section which may be very useful
– especially the Platform-Specific Event
Handling appendix. An appendix to image
loading, which covers the hidden classes
in the sun.awt.image package, is also
included.

Conclusion
While owning the CD-ROM version of

these books isn’t quite the same as owning
the printed copies, it’s in many ways better.
You are able to search the entire book for
specific words and can have instant access
to the specific information you are looking
for. Also, the most up-to-date versions of the
books are available online, so they never go
out of date. “Java in a Nutshell’ is by and
large the best quick reference for Java you’ll
find. By combining it with the other four
books which make up the Java Reference
Library, O’Reilly has developed a reference
set which will be well used by the serious
Java programmer.

About the Author
Edward Zebrowski is a technical writer based in the
Orlando, FL area. Ed runs his own Web development
company, ZebraWeb, and can be reached on the net
at zebra@rock-n-roll.com

zebra@rock-n-roll.com

48 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

This article proposes to reinvent select
TCP based application layer Internet proto-
cols and their client/server implementa-
tions in the framework of CORBA/IIOP [2].
Advantages of this approach will be exhib-
ited from the perspectives of programming,
deployment and protocol evolution. As an
illustrative example, I will attempt a redefi-
nition of the IRC protocol [1] in terms of
OMG IDL (Interface Definition Language). I
will implement its server object and client
application in Java with Javasoft’s JavaIDL
[3] as the underlying ORB, paying attention
to implementation issues different from
those of its socket counterpart. I will then
briefly go over various benefits the CORBA
framework can bring to the deployment of
the reinvented IRC ‘protocol’, with empha-
sis on the seamless incorporation of load
balancing, security and transaction pro-
cessing control.

Overview
CORBA has recently become the most

talked-about distributed object frame-
work for building client/server applica-
tions. However, few people have envi-
sioned leveraging CORBA/IIOP on legacy
client/server applications based on appli-
cation layer Internet protocols such as
SMTP, FTP, NNTP, IMAP, IRC, etc.

The unprecedented growth of the
Internet as witnessed in recent years is
mostly fueled by the widespread use of
various Internet services, notable exam-
ples being e-mail and the World Wide
Web. The underlying technology behind
these Internet offerings is based on a
client/server model with various applica-
tion layer Internet protocols as the com-
munication foundation. For years, these
Internet protocols have been defined at the
level of TCP socket streams.

The TCP socket framework, however,
bears various inherent shortcomings. It
turns out that CORBA offers a solution to

remedy these shortcomings in an elegant
manner.

The Socket Model
A TCP application layer Internet proto-

col engages two computer processes linked
by a single or multiple (e.g., FTP) TCP con-
nection(s), allowing one process (the
client) to request services of a certain kind
from the other (the server). The protocol
governs the dialogs the client exchanges
with the server over their TCP connection.
The rule for the dialogs is usually
expressed in Backus Naur Form (BNF), and
serves as a contractual agreement for com-
munication between the client and server
implementations.

A TCP socket stream is a primitive com-
munication infrastructure. Other than guar-
anteeing delivery of a sequence of bytes
from one end of a TCP connection to the

other in the same sequential order, it essen-
tially offers no additional services. How a
data object is marshaled for transportation
over the wire is left as an exercise, often a
tiresome one, to the design and implemen-

tation of the Internet protocol.
Real world deployment of an Internet

protocol usually demands certain
additional common functionality not
related to the core application logic.
For instance, a farm of Web servers is
usually deployed to host a heavily hit
Web site, giving rise to the need of uni-
formly brokering incoming HTTP
requests among the HTTP servers,
and for balancing their loads. E-com-
merce applications often necessitate
encryption of network traffic, for
instance, to prevent sensitive data
from being eavesdropped.

Within the socket model, such
additional requirements can only be
tackled with ad hoc approaches. Load
balancing of Web servers with identi-
cal content, for instance, is usually
achieved through ‘Round Robin DNS’,

in which the IP addresses of all partici-
pating Web servers are statically mapped
to the hostname of the Web site. This ad
hoc approach works because such HTTP
servers seldom share state information
among one another (cf. statelessness of

CORBACORNER

Reinventing TCP Based
Internet Protocols in CORBA

CORBA offers a solution to remedy TCP’s
inherent shortcomings in an elegant manner

by Kim Lau

This month’s article, by Kim Lau, presents an
interesting and perhaps unorthodox view of
CORBA as a tool. In essence, Mr. Lau
argues that we can view CORBA as an
automatic protocol generator, designing an
Internet-based protocol based on a CORBA
IDL description of an interface. And what
interfaces does Mr. Lau propose to gener-
ate protocols for? Why, the very interfaces
that are “implied” by the protocols that per-
vade today’s Internet! Rather than spend
time at the difficult-to-upgrade bit level, Mr.
Lau argues that new (and upgraded) Inter-
net services ought to be defined at a
portable interface level, leaving CORBA to
automatically generate protocols. A
thought-provoking approach indeed, and
one that has been discussed many times
within the OMG process. Enjoy this con-
crete approach to the issue.

Richard Soley
Editor, CORBACORNER
President and Technical Director of the
Object Management Group, Inc.

“Great care... must

be taken in the design

of the protocol upgrade

to ensure that clients

and servers of different

versions are

interoperable.”

http://www.JavaDevelopersJournal.com 49Java DEVELOPER’S JournalVOLUME 2 ISSUE 12 •

New House ad
full

50 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

HTTP), except possibly through a single
backend DBMS. However, the Round Robin
DNS approach is not robust, since the DNS
server process has no way to find out the
load of each participating Web server. It
does not even have knowledge of whether a
Web server is out of service or not. It is
therefore not uncommon to come across
popular Web pages with a certain percent-
age of broken in-line images, especially if
the Web site is served from a lesser com-
puting platform.

From time to time, an Internet proto-
col is due for upgrade to meet previously
unanticipated demands, or to improve
protocol performance. With a worldwide
installed base, it is next to impossible to
depreciate and retire implementations of
the clients and servers conforming to an
older version. Great care, therefore, must
be taken in the design of the protocol
upgrade to ensure that clients and
servers of different versions are interop-
erable. This compatibility requirement
imposes severe constraints in the design
of the upgrade.

To summarize, the shortcomings of
the socket model include:
• Application developers need to marshal

structured data for communication over
TCP streams. The data marshaling and
unmarshaling complicates the coding
effort, introducing unnecessary digres-
sion on software developers from the
main application logic.

• Additional effort is required for load bal-
ancing, security and others. Usually ad
hoc approaches result.

• Upgrade of an Internet protocol is con-
strained by compatibility baggage.

The CORBA Framework
CORBA (Common Object Request Bro-

ker Architecture) [2] is a specification for
creating and using distributed objects in a
platform-independent and language-neutral
manner. CORBA specification is written and
maintained by the Object Management
Group (OMG) [4], an industry consortium
of all major software vendors with the
exception of Microsoft.

Within the CORBA framework, the type
of object is described by OMG IDL (Inter-
face Definition Language). The IDL defini-
tion of an object publicly exposes its ser-
vices to its potential clients. Well-defined
mappings have been established for trans-
lating IDL definitions into common pro-
gramming languages. As of this writing, the
Java language mapping has just been
approved by the OMG.

Besides allowing distributed objects to
interoperate, CORBA defines a rich set of
preexisting services and facilities. A CORBA
object can seamlessly incorporate such

commonly demanded functionality as
transaction processing control and distrib-
uted object security.

In addition to CORBA, there are other
competing architectures available includ-
ing RMI (Remote Method Invocation), and
Microsoft’s DCOM (Distributed Component
Object Model). RMI is closely tied with
Java, allowing a client written in Java to

invoke methods carried by a remote Java
object. DCOM is the answer from Microsoft
for communications among distributed
objects living in the Win32™ world. Since
the Internet is a heterogeneous network
linking up computers in diverse platforms,
CORBA is currently the only architecture
well suited for handling distributed objects
over the Internet.

The recipe for putting a legacy Internet
protocol into the CORBA framework is:
1. Redefine the protocol in terms of OMG

IDL.
2. Construct server objects on your target-

ed platform by implementing various
interfaces defined in the protocol IDL.

3. Construct clients which interact with a
server object by invoking its methods as
defined in the protocol IDL.

Protocol upgrade is achieved through
IDL inheritance. The upgraded server
object will implement the inherited inter-
faces, which includes added attributes and
methods pertaining to the newer protocol
version. Appealing to the CORBA dynamic
invocation interface, an upgraded client
can determine at run-time which interfaces
the server object exposes, thus ensuring
interoperability with a server of older pro-
tocol version.

The advantages of the CORBA approach
are:
• Communications between client and

server happen as method calls, hiding
programmers from explicit data marshal-

ing.
• A rich set of preexisting CORBA object

services and CORBA facilities can be uti-
lized to seamlessly incorporate such
commonly demanded functionality as
load balancing, security and transaction
processing monitoring.

• Protocol upgrade is achieved through IDL
inheritance. Clients of newer protocol

versions can discover at runtime
whether the server supports the
newer interface. Clients and servers of
different protocol versions are thus
automatically interoperable. The
design of the newer protocol version
is therefore not constrained by com-
patibility baggage.

Example: Internet Relay Chat
To illustrate the various ideas

introduced here, I will attempt to
recast the IRC protocol [1] into the
CORBA framework. IRC is a text-based
protocol allowing teleconferencing
among connecting clients in a chat
room (channel). An IRC server can
hold multiple channels, each of which
is comprised of a group of participat-

ing users. A user’s level of participation
in a channel can be characterized by the
user mode. A user of the SPECTATOR mode
can observe the chat in progress but can-
not broadcast a message to all channel
users. A user of the PARTICIPANT mode has
the capability to broadcast a message to all
channel users. A user of the HOST mode is
a PARTICIPANT with the added privilege of
changing the modes of other channel users,
as well as various channel properties.

From a functional point of view, the IRC
protocol can be categorized into 2 parts:
• Protocol governing interaction between

an IRC server and its clients
• Protocol governing interaction among

IRC servers for content replication

My attempt at IRC redefinition will focus
on the first part here. If there is sufficient
interest from the Internet community, I will
exert future effort on the second part to
complete the whole CORBA-tization
process.

Why pick IRC for an exercise of CORBA-
tization? Why not HTTP, for instance, which
is better known among Internet users? The
reasoning is threefold. First, unlike HTTP,
which in essence follows a simple
request/response cycle, IRC is sufficiently
complicated and feature rich to merit a
CORBA approach. Second, unlike HTTP, IRC
requires its server object to maintain cer-
tain state information for each client con-
nection; namely, what channels (chat
rooms) the client has joined and what user
mode the client carries for each subscribed

“...unlike HTTP, which in
essence follows a simple
request/response cycle,

IRC is sufficiently
complicated and feature

rich to merit a
CORBA approach.”

51VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

channel. It would be less trivial to CORBA-
tize IRC than the stateless HTTP. Third, IRC
is one of a few Internet protocols with asyn-
chronous elements. An IRC client can, at
any time, receive channel messages from
other clients, as well as notification of a
new user joining a subscribed channel, for
instance. Such asynchronous elements pre-
sent an opportunity to illustrate call back
methods within the CORBA framework.

Listing 1 exhibits my attempt to redefine
IRC in terms of OMG IDL. The Ircd interface
describes a CORBA object a client will inter-
act with in the beginning, to inquire about
available channels and to log in. Upon a
login invocation from a client, the server
process will create a CORBA object imple-
menting the UserSession interface, and
pass a reference of that UserSession object
back to the client. From the server’s per-
spective, a UserSession object tracks vari-
ous state information of its corresponding
client. The client invokes methods of its
UserSession object to perform various IRC
activities.

The UserNotifier interface describes a
CORBA call back object residing at an IRC
client for receiving asynchronous events
from the server. A UserNotifier object
needs to be created at the IRC client side,
and passed to the IRC server at login. The

interface defines methods for an IRC client
to receive channel message posting, notifi-
cations of user arrival and departure, notifi-
cation of a user mode change and server
pings.

The IRC server and client objects are
then implemented in Java with JavaIDL as
the underlying ORB. Without going into
coding details, I will merely point out that
porting the implementation for another
Java ORB should be relatively easy.

Since Java does not allow parameter
passing by reference, the CORBA language
mapping stipulates that passing an inout or
out parameter requires the use of the Hold-
er class. The UserNotifier call back object
needs to be passed as an inout parameter.
Passing it as an input parameter will trigger
a CORBA exception for unknown reasons. It
is probably a bug of the JavaIDL early
release.

Due to its length, the complete Java
source code for both the IRC server and
client implementations will not be listed
here. Interested readers may download it
along with setup information from
http://www.unique.net/~lau/CORBAirc/

Epilogue
Currently, the use of CORBA is mostly

confined to the construction of n-tier

client/server business applications. The
forthcoming object Webs may bring CORBA
closer to the mass. Much has been said in
this article on the viability of leveraging
CORBA on legacy Internet protocols. The
Redmond school of thought has always pro-
claimed the installed base of COM/DCOM is
an order of magnitude larger than that of
CORBA. This claim may not be able to hold
if CORBA-based Internet applications, such
as IMAP-like e-mail clients/servers and
NNTP-like Usenet news readers/servers are
in widespread use.

References
1. J. Oikarinen, D. Reed. Network Working
Group RFC 1459 (Internet Relay Chat)
2. CORBA/IIOP 2.1 Specification,
http://www.omg.org/corba/corbiiop.htm
3. JavaIDL, http://www.javasoft.com/prod-
ucts/jdk/idl/
4. Object Management Group,
http://www.omg.org/

About the Author
Kim M. Lau is a software engineer at Warner Bros.
online. He holds a Ph.D. in Physics from UCLA.
Kim can be reached at: lau@unique.net

lau@unique.net

Listing 1.
Redefinition of IRC in OMG IDL

module CORBAirc {

exception NickCollision {};
exception NickNotFound {};
exception ChannelNotFound {};

typedef sequence<string> StringSeq;

enum UserMode { SPECTATOR, PARTICIPANT, HOST };

interface UserSession {
readonly attribute string nick;
readonly attribute string realname;

boolean join (in string channel);
boolean part (in string channel);
StringSeq get_channel_users (in string channel);
UserMode get_my_usermode (in string channel)

raises (ChannelNotFound, NickNotFound);
UserMode get_usermode (in string channel,

in string nick
) raises (NickNotFound, ChannelNotFound);
boolean set_moderated (in string channel,

in boolean moderated);
boolean set_topic_anyone (in string channel,

in boolean STA);
boolean set_topic (in string channel,

in string newTopic);
boolean set_usermode (in string channel,

in string nick, in UserMode mode);
void send_msg (in string channel,

in string msg);

void whisper (in string nick,
in string msg);

void quit();
};

interface UserNotifier {
void msg (in string channel,

in string sender, in string msg);
void whisper (in string sender, in string msg);
void new_user (in string channel, in string nick);
void user_left (in string channel, in string nick);
void usermode_changed (in string channel,

in string nick, in UserMode newMode);
void ping();

};

interface Ircd {
UserSession login(in string nick,

in string realName,
inout UserNotifier notifier

) raises (NickCollision);

StringSeq list_channels();
string get_realname (in string nick)

raises (NickNotFound);
string get_topic (in string channel)

raises (ChannelNotFound);
void get_channel_info (in string channel,

out boolean moderated,
out boolean setTopicAnyone

) raises (ChannelNotFound);
};

};

52 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Data
You just can’t get away from it. No mat-

ter what you do, a certain amount of data is
always generated. One of the more pro-
found quotes of the day can be attributed
to Peter Large of Information Anxiety,
where he once said:

“More Information has been produced in
the last 30 years than in the previous 5,000.
About 1,000 books are published internation-
ally every day, and the total of all printed
knowledge doubles every eight years.”

A sobering thought. Data is to the devel-
oper what heat is to the physicist. They
share the same dilemma; for every opera-
tion a small amount of heat or energy is pro-
duced; sometimes welcomed, sometimes
not. Fortunately, the majority of data gener-
ated is purely cosmetic and does not
require permanent storage. However, a cer-
tain amount of data does require archiving.

The main issue isn't the fact that this
large quantity of data is being generated;
quite the contrary. But how we organize
this information in such a way that we can
find what we want, when we want, is the
much bigger issue. Get this right and the
volume of data being handled becomes aca-
demic. The famous Sioux chieftain, Sitting
Bull, remarked, back in 1876:

“'The white man knows how to make
everything, but he does not know how to dis-
tribute it.”

A man obviously much ahead of his
time; a remark so fitting in today’s mass
data producing world. So, what has all this
got to do with us, and more importantly,
what has it to do with Java?

We are all responsible for organizing our
data in a more structured manner. If it
makes sense to us, then the chances that it
makes sense to the next person are very
high. Therefore due care and attention
must be taken to all data being produced,
by whatever means.

This article kicks off a mini-series of arti-
cles focusing purely on data storage and

exploring some of those options open to
you as a Java developer. To start with, we
will look at storing simple pieces of infor-
mation using simple text files. Next month,
we will take a close look at the Object Seri-
alization that was introduced in the 1.1
release of the JDK and the following month
look at storing large amounts of data using
a fully compliant JDBC database. Finally, we
will round off this mini-series by looking at
how you can use Symantec’s implementa-
tion of dbAnywhere to store data.

So, let’s begin.

Small Volumes
Data comes in many shapes and sizes,

and sometimes, paradoxically, the smaller
the data, the more hassle it is to handle.
How many of us have broken the golden
rule of never hard coding values into pro-
grams because we knew it was too much
work just to save one stupid value, and by
the time the program was developed, we
were left with many so called ‘stupid val-
ues’ all hard coded and awkward to change.

Well, fear no longer. Let me introduce
you to a class that will make the saving and
retrieval of such ‘stupid values’ so easy that
hard coded values will be a thing of the
past.

Before we go into the implementation
details of the class, let’s do a quick
overview of what features we would like to
see from such a class. First, it has to be
generic and be able to handle any number
of parameters. Second, it must be able to
read a pure ASCII file – that way, we will
manually edit the values if necessary. Final-
ly, it must allow the saving of data as well as
reading.

A solution that has been in use on the
Microsoft Windows platform for many
years is the concept of an INI, or informa-
tion file. This is where data is stored, on a
line-by-line basis, as key/value pair. For
example:

UserLogin=ceri
Password=moran

So let’s take this system and use it as the
basis for our new data handling class. The
only difference between our implementa-
tion and the one employed in Windows is
that ours will not support the notion of cat-
egories – in other words, we won’t have any
[] sections.

INI class
This class will be constructed in such a

way that a calling process will be able to
request a particular parameter, using the
same name as appears in the main INI file.
We can then identify at least one parameter,
the filename of the INI file. Using this para-
meter we will be able to locate the file and
begin reading it.

There are two approaches that may be
taken at this point. The first one, and most
obvious, is to open and parse the file every
time a particular parameter is called for.
The advantage of this system lies in the fact
that no memory is used in storing all the
parameters. However, if a lot of parameters
exist that are continually being read, then a
significant amount of time is lost opening
and reopening the file each time.

A better solution is to bring all the para-
meters into memory in such a way that it
allows for easy retrieval. The most obvious
data structure for this task is the
java.util.Hashtable. This structure allows
us to store data, based on a unique key,
which in this case is the name of the para-
meter (see Listing 1).

From the user’s point of view there are
only two public functions: one for reading
parameters and the other to set parame-
ters. The class is created by passing in the
full path of the INI file, which throws an
exception if something goes wrong.

As soon as the class is created, the INI
file is opened and parsed, which can be
seen in Listing 2. This is a simple matter of
creating a new Hashtable instance and then
reading the file, line-by-line. Assuming the
line isn’t empty, or a comment field (denot-
ed by a hash (#) symbol), it is parsed into a
key and data pair (see Listing 2).

Once retrieved, the value is inserted into
the Hashtable. If for some reason the value

VISUAL CAFÉ

The Data Series
Storing and reading data using the INI file format

by Alan Williamson

53VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

already exists, then the subsequent insert
is ignored. Notice the inner try/catch block.
This is to catch any parsing problems that
may be associated with a particular line. If
this wasn't here, then as soon as a rogue
line is met, the first try/catch block would
catch the problem and reading of the file
would stop. This would flag an exception at
the creation of the class and the whole file
would be deemed useless.

Once created, reading parameters is a
simple matter of calling the appropriate
methods from the Hashtable. Listing 3 illus-
trates the rather simple get() method.

If the Hashtable does indeed contain
that particular parameter, then it is
retrieved; otherwise, null is returned.

The majority of INI files are used purely
for reading values, but there are times
when writing a value back out to the INI is
desirable. This is the reason for the set()
method of the INI class. However, whereas

the read method didn’t incur any addition-
al file access time, the writing method
must. When a value is set, it must be writ-
ten straight out to file, in case of a system
crash or some other undetermined state
that may prevent the class from closing nat-
urally.

Listing 4 shows the setting of a new
value. Note that if the parameter already
exists, then it is first removed and then re-
inserted as the new value. Having set the
correct parameter in the Hashtable, it must
be written out to the file, which can be seen
in Listing 5.

Writing the data out to file is a trivial
matter of running through the Hashtable,
and formatting the data in a <key>=<value>
format.

Summary
This article began the mini-series on

data and shows how you, the developer,

can best treat it using Java. We looked at
the easiest way of storing and reading data
using the INI file format found in the
Microsoft Windows platform. A fully work-
ing class was developed that can be used to
read and write values to such a file, with
extreme ease.

The next article in this series will look at
the next level up, which is Object Serializa-
tion as introduced in the 1.1 of the JDK.

About the Author
Alan Williamson is on the Board of Directors at N-
ARY Limited, a UK-based Java software company,
specializing in Java/JDBC/Servlets. He has recently
completed his second book, focusing purely on Java
Servlets, with his first book looking at using
Java/JDBC/Servlets to provide a very efficient data-
base solution. Alan can be reached at alan@n-
ary.com (http://www.n-ary.com) and he welcomes all

Listing 1: Storing data based on parameter.
public class ini extends java.lang.Object {

private String FileName = null;
private Hashtable data = null;

public ini(String _filename) throws Exception;

public String get(String _parameter);
public void set(String _parameter, String _value);

private boolean reloadData(BufferedReader InFile);
private boolean writeData(PrintWriter OutFile);

}

Listing 2: Opening & parsing the INI file.
private boolean reloadData(BufferedReader InFile){

String LineIn="";
String key, value;
int c1;
data = new Hashtable();

try{
while ((LineIn=InFile.readLine()) != null){

if (LineIn.length() == 0 || LineIn.charAt(0) ==
'#')

continue;

try{
c1 = LineIn.indexOf("=");
key = LineIn.substring(0,c1).toLowerCase();
value = LineIn.substring(c1+1,LineIn.length()

);
data.put(key,value);

}catch(Exception E){}
}

return true;
}catch(Exception E){}
return false;

}

Listing 3: Get () method.
public String get(String _parameter){

if (data.containsKey(_parameter))
return (String)data.get(_parameter);

else
return null;

}

Listing 4: Setting a new value.
public void set(String _parameter, String _value){

if (data.containsKey(_parameter)){
data.remove(_parameter);

}

data.put(_parameter,_value);
try{

writeData(new PrintWriter(new BufferedWriter(new
FileWriter(FileName))));

}catch(Exception E){}
}

Listing 5: Writing the parameter to the file.
private boolean writeData(PrintWriter _Out){

Enumeration E = data.keys();
String key;
while (E.hasMoreElements()){

key = (String)E.nextElement();
_Out.println(key + "=" + (String)data.get(key));

}
_Out.flush();
return true;

}

Listing 6: Complete listing.
import java.util.*;
import java.io.*;

public class ini extends Object {

private String FileName = null;
private Hashtable data = null;

alan@n-ary.com

54 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

public ini(String _filename) throws Exception
{

FileName = _filename;
BufferedReader InFile = new BufferedReader(new Fil-

eReader(_filename));

if (reloadData(InFile) == false)
throw new Exception("File created an error:" +

FileName);
}

public String get(String _parameter){

if (data.containsKey(_parameter))
return (String)data.get(_parameter);

else
return null;

}

public void set(String _parameter, String _value){

if (data.containsKey(_parameter)){
data.remove(_parameter);

}

data.put(_parameter,_value);
try{

writeData(new PrintWriter(new BufferedWriter(new
FileWriter(FileName))));

}catch(Exception E){}
}

private boolean writeData(PrintWriter _Out)
{

Enumeration E = data.keys();
String key;
while (E.hasMoreElements()){

key = (String)E.nextElement();
_Out.println(key + "=" + (String)data.get(key));

}
_Out.flush();
return true;

}

private boolean reloadData(BufferedReader InFile)
{

String LineIn="";
String key, value;
int c1;
data = new Hashtable();

try{
while ((LineIn=InFile.readLine()) != null){

if (LineIn.length() == 0 || LineIn.charAt(0)
== '#')

continue;

c1 = LineIn.indexOf("=");
key = LineIn.substring(0,c1).toLowerCase();
value = LineIn.substring(c1+1,LineIn.length()

);
data.put(key,value);

}

return true;
}catch(Exception E){}
return false;

}

Net Guru
1/4 Ad

Imperial
1/4 Ad

http://www.JavaDevelopersJournal.com VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journal 55

IAD

• VOLUME: 3 ISSUE: 2 http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal56

Implementation of a fixed size pool of
Objects in a distributed application must
consider problems caused by the unpre-
dictable nature of remote connections. An
implementation is presented here for Java’s
Remote Method Invocation, which takes
advantage of the Distributed Garbage Col-
lector to solve those problems.

You’re probably familiar with the mech-
anism of a fixed size pool of Objects, in the
context of a memory management system,
that keeps memory in a fixed size buffer
pool. The idea is to manage the use of a
scarce resource by requiring Objects to be
checked out of and into a pool. When all
Objects are checked out, the pool is
empty; clients cannot check out any more,
until a claimed one is checked back in.
When a client is done with an Object, it is
expected to check the Object back into the
pool so that other clients may claim it.

Aside from memory management, you
could use an Object Pool of this sort to
manage any scarce resource, or limit the
number of concurrent users of a service or
data structure. For example, you could use
an ObjectPool as the basis of a simple
license enforcement scheme which would
limit the number of concurrent users of a
service. As another example, you could
use it to limit the number of concurrent
visitors in a chat room application.

In a simple, non-remote Java applet or
application, implementation of a fixed size
ObjectPool would be fairly straightfor-
ward, as long as you can follow the rule
that clients must check objects back into
the pool when they are done with them.
The ObjectPool needs only to keep a fixed
size Vector of Objects, and parcel them out
as requested until no more are left.

The requirement that Objects be
returned to the pool when a client is done

with them could be problematic in large
applications where the end of an Object’s
usefulness could occur in many different
places, far removed from where it was
checked out of the pool. The problem is
analogous to memory management in sys-
tems without garbage collection. It quickly
becomes onerous to live up to your
responsibility of checking the memory, or
in this case, the Object from the Object-
Pool, back in.

One idea is to do garbage collection on
Objects from the ObjectPool, leveraging
off of Java’s own garbage collection mech-
anism. You could override the finalize()
method of the Objects in the ObjectPool to
check the Object back in when the Object
is slated for garbage collection. In this
way, the client needs only to remove refer-
ences to the Object and rely on the local
garbage collector to check the Object back
into the pool.

The problem with that solution is that
garbage collection in Java is, with good
reason, not guaranteed to be timely.
Garbage collection is expensive; the VM is
free to do it only when necessary. Since
garbage collection of Objects from the
ObjectPool would rely on Java’s garbage
collection, it would be subject to the same
vagaries. In many applications, the Object-
Pool cannot wait indefinitely to reclaim its
lost Objects. If your program does not use
much memory, your unreferenced Objects
may never get garbage collected, and the
Objects would never get checked back
into the ObjectPool.

An additional concern arises in a dis-
tributed application where the client may
be in a different VM. What if contact with
the client is broken before the client is
able to check its Object back in to the
server’s pool? How can the pool reclaim
that lost Object?

I present here an elegant solution to
these problems for Java’s Remote Method
Invocation, which relies on RMI’s Distrib-
uted Garbage Collector. In contrast to the
local garbage collector, the DGC’s behav-
ior is well defined and reliable with
respect to its timing. The DGC employs a
lease mechanism for remote references.
All remote references are leased to clients
for a default period of ten minutes (which
may be overridden by setting the
java.rmi.dgc.leaseValue property). The
client VM must request a new lease before
the period runs out. Otherwise the server
considers the remote reference to be dead
and releases the corresponding remote
Object to the local garbage collector for
potential collection.

RMI also provides the
java.rmi.server.Unreferenced interface,
which remote Objects may implement to
be notified when all remote references to
the remote Object have been released.
This includes the case when the last
remote reference to a remote Object is
released due to expiration of the lease. So
taken together, Distributed Garbage Col-
lection and the Unreferenced interface,
give us just what we need to reclaim lost
Objects from an ObjectPool.

Listing 1 shows an implementation of
an ObjectPool that works for both remote
clients and local clients. Even non-remote
applications could benefit from this imple-
mentation because of its reliable garbage
collection and reclamation of unrefer-
enced Objects.

There are a few subtleties in the imple-
mentation that are worthy of elaboration.
First of all, notice that remote Objects are
created only as needed. This avoids the
overhead of pre-allocating the Objects
which may not all be needed every time
the application is run.

Remote Objects are never released for
local garbage collection; they are reused.
This avoids the overhead of constantly
creating new remote Objects every time an
Object needs to be doled out. RMI calls the
unreferenced() method every time the last
remote reference to the remote Object is
released; even multiple times on the same
remote Object.

When an Object is checked back in,

An Object Pool Using
Remote Method Invocation

A welcome addition to your
object-oriented Java arsenal

PROGRAMMING TIPS

by Steven Schwell

57VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

notice that the corresponding Object is
taken from the ‘out’ Vector rather than the
returned Object itself. This is because the
returned Object may be only the stub for
the remote Object, rather than the remote
Object itself. Vector’s indexOf()method
uses the equals() method to find the
Object in the array. Since the PoolObject is
extended from UnicastRemoteObject, it
inherits the implementation of equals()
from RemoteObject which considers stubs
to be equal to their corresponding remote
Objects. In this way, I’m guaranteed to be
reusing the remote Object itself rather
than just its stub.

One other note: The PoolObject inner
class is a remote Object and, as such,
needs to be post-compiled by RMIC to cre-
ate its stub and skeleton classes. Running
RMIC on inner classes is a bit tricky
because the name of the inner class is gen-
erated by javac and includes the ‘$’charac-
ter. The ‘$’ character must be quoted to
make it to the RMIC compiler. On some
platforms, it must be quoted more than
once. For example, on Solaris, the com-
mand line looks something like:

rmic ObjectPool\\\$PoolObject

Anticipated Patterns of Reuse
The PoolObject in the ObjectPool has

no substance aside from the unrefer-
enced() method. This is not a very inter-
esting Object aside from its characteristics
as an Object in a fixed size pool. Even so,
in some circumstances, that may be all
you need. If so, you can use the ObjectPool
as is, or perhaps write an ObjectPoolIfc
Remote interface so that ObjectPool can
be accessed directly from RMI clients.

It is more likely, though, that you will
need more interesting Objects to be in the
fixed size pool. The implementation in

Listing 1 is not just an example of how you
could write your own ObjectPools. It is
intended for you to reuse the class exactly
as it is to create your own ObjectPools. It
is probably worth elaborating on this as an
illustration of general techniques for class
reuse.

In the design of any RMI system, you
will be faced with the choice of passing
Objects between VMs by value or by refer-
ence. Passing by value is accomplished by
implementing the Serializable interface,
and passing by reference is accomplished
by implementing the Remote interface. A
discussion of the tradeoffs in this design
decision is beyond the scope of this arti-
cle. For our purposes here, let’s consider
how to reuse ObjectPool for both cases,
when the Object in the ObjectPool is to be
passed by value and by reference.

If the Objects in your fixed size pool are
to be remote Objects, i.e. passed by refer-
ence, you can subclass PoolObject to cre-

ate that Object and subclass ObjectPool,
overriding the newPoolObject() factory
method to instantiate your PoolObject
subclass. This is an example of the Tem-
plate Method design pattern. The code
would look something like Listing 2.

If the Objects in your fixed size pool are
to be Serializable, i.e. passed by value, you
can reuse ObjectPool by composition. The
PoolObject remote reference will be
passed to the client as a remote Object
when the PoolObject is serialized. That
contained remote reference in the Serializ-
able PoolObject is not visible to clients of
the PoolObject. It is there solely to enable
collection of lost PoolObjects by the DGC.
The code would look something like List-
ing 3.

Of course these are just some of the
ways that ObjectPool and PoolObject can
be reused. This is a maximally reusable
and generally powerful little class that
should be a welcome addition to your
object-oriented Java arsenal.

References
Gamma, E., Johnson, R. & Vlissides, J.
“Design Patterns: Elements of Object-Orient-
ed Architecture” Addison-Wesley, Reading,
MA, 1995.
Java Remote Method Invocation Specifica-
tion, JavaSoft

About the Author
Steven Schwell is a Senior Developer and Java
Guru in the New York office of Micromuse Inc., a
leading provider of Service Level Management soft-
ware. Steve is currently developing a number of
large distributed Java apps. He holds an M.S. in
Computer Science from Columbia University. Steve
can be reached at Steven.Schwell@micromuse.com

Listing 1.
public class ObjectPool {
protected int size;
protected Vector in;
protected Vector out;
/* member class: */
public class PoolObject extends UnicastRemoteObject

implements Remote, Unreferenced {
public PoolObject() throws RemoteException { }
public void unreferenced() {
try { checkIn(this); // reclaim lost Object
} catch (Exception e) {}

}
}

/** constructor */
public ObjectPool(int size) {
this.size = size;
this.in = new Vector(size);
this.out = new Vector(size);

}

/** factory method to create new Object for the pool */
protected PoolObject newPoolObject() throws RemoteException {
return new PoolObject();

}

/** check out an Object from the pool */
public synchronized Object checkOut() {
Object o = null;
if (out.size() < size) {
if (in.isEmpty()) {
try {
o = newPoolObject();

}
catch (RemoteException e) {
}

}
else {
o = in.elementAt(0);
in.removeElementAt(0);

Steven.Schwell@micromuse.com

“Garbage collection

is expensive; the

VM is free to

do it only when

necessary.”

“Garbage collection

is expensive; the

VM is free to

do it only when

necessary.”

• VOLUME: 3 ISSUE: 2 http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal58

59VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

60 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

}
out.addElement(o);

}
return o;

}

/** check an Object back into the pool */
public synchronized void checkIn(Object o) {
int x = out.indexOf(o);
/* rely on Vector's use of equals() method
** to equate stubs with remote objects if necessary
*/

if (x < 0) throw new NoSuchElementException();
Object oo = out.elementAt(x);
/* get the real Object, not a stub */

out.removeElementAt(x);
in.addElement(oo);

}
}

Listing 2.
public XXPool extends ObjectPool {
class XXObject extends ObjectPool.PoolObject implements Remote {
... // instance variables and methods for your Object
XXObject() throws RemoteException {}

}
public XXPool(int size) {
super(size);

}
protected PoolObject newPoolObject() throws RemoteException {
return new XXObject();

}

}

Listing 3.
public XXPool {
static public class XXObject implements Serializable {
private Object poolObject;
... // instance variables and methods for your Object
XXObject(Object poolObject) {
this.poolObject = poolObject;

}
}
ObjectPool objectPool;
public XXPool(int size) {
this.objectPool = new ObjectPool(size);

}
public XXObject checkOut() {
Object o = objectPool.checkOut();
if (o == null) return null;
return new XXObject(o);

}
public void checkIn(XXObject o) {
objectPool.checkIn(o.poolObject);

}
}

61VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

SIGS

62 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Hous
Spre

63VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

se Ad
ead

64 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

DeNova Introduces J’Express
(Vancouver, BC) - DeNova has introduced
J’Express, a pure Java installer and distrib-
utor. Developers build cross-platform Java
installations with the click of a button. Or,
they can customize their installation with
Java or external programs. Customers
download and install Java apps as one
smooth procedure from the Web.

Java programmers can build a complete
Java installation through easy to navigate
tabbed panels or write their own wizard
panels which integrate into the installation.
The install program may be customized to
do anything they can do from Java, includ-
ing calling native code and running
other programs.

J’Express helps developers stop
wasting time trying to track down
the exact classes their Java app or
applet uses. End users don’t com-
plain about missing classes, distribu-
tion files are more compact and there’s
less wasted disk space. It also builds zip
files and directory trees and reliably
uploads each version to the Web. Or, J’Ex-
press may be configured to launch an app
at the end of the installation.

The list price of J’Express is $499. For
more information, see DeNova’s Web site at
www.denova.com, call 408 490-2852 or e-
mail sales@denova.com.

Symantec’s Just-in-Time Java™
Compiler 3.0 Runs Java Applets
and Applications Faster
(Cupertino, CA) - Symantec Corp., the lead-
ing provider of Internet development tools,
has announced the availability of Version 3
of its Just-in-Time Java™ bytecode compil-
er (JIT). Released test scores show that this
JIT outperforms any other JIT available -- it
is over 50% faster than Microsoft’s IE4 JIT.

A JIT is a fundamental component of the
Java Virtual Machine and boosts the execu-
tion speed of Java applets and applications
by instantly converting Java bytecode to
native code on the fly rather than by being
interpreted as bytecode by the Java Virtual
Machine. Symantec's JIT 3.0 is an integral
part of their Visual Café for Java line of
development tools and is integrated into
Sun’s Java Performance Runtime for Win-
dows as well as into Netscape Communica-
tor.

Symantec’s JIT Version 3.0 is available
now as an integral part of Visual Café for
Java. Visual Café for Java Windows Version
2.1 customers should visit Symantec’s

update center to download a free upgrade
from the Symantec Web site. The LiveUp-
date feature will be available shortly. Future
versions of Sun’s Java Performance Run-
time for Windows also will include the JIT
3.0.

For more information, please visit their
Web site at www.cafe.symantec.com.

Rogue Wave’s JChart 2.1 First
to Offer Overlay Charts as
JavaBean™ Components
(Corvallis, OR) - Rogue Wave Software has
announced JChart 2.1, the first charting

tool for Java™ to offer a palette
of overlay charts built
from JavaBeans™
components. Over-

lay charts, a compos-
ite of two or more
chart types in a single

chart, are commonly used
in industries such as investment

banking and securities to display
stock analysis and financial information.
Also new with JChart 2.1 is the ability to

mix and match JavaBeans components,
combining them to create custom overlay
charts. 39 JavaBeans charting components
permit chart characteristics to be easily set
and modified through individual property
sheets.

JChart 2.1 includes JavaDocs, a User
Guide, examples and online help. It is
priced at $595 for a single use, source code
license and is available immediately. JChart
2.1 supports Win95, Win NT 4.0 and Solaris.
IDEs supported include Borland’s JBuilder
and IBM’s VisualAge for Java. Browsers
include versions of Netscape’s Navigator
and Microsoft’s Internet Explorer that sup-
port the JDK 1.1.

For more information, see Rogue Wave’s
Web site at www.roguewave.com.

Phaos Creates Digital
Certification Toolkit
(New York, NY) - Phaos Toolkit has intro-
duced a toolkit that enables developers to
easily add digital certificate technology
into their Web applications. Dubbed the
J/CA™ certification Toolkit, this package
provides a turnkey certification solution for
an array of applications – from electronic
commerce to information technology – for
functions such as access control, strong
authentication, notarization and copyright
protection.

The J/CA Certification Toolkit supports

certificates based on the X509 version 3
standard. Applications built with the J/CA
Toolkit can issue, parse, protect and vali-
date certificates and interoperate with
other certifying authorities. The J/CA
Toolkit also includes technology for revok-
ing certificates which have expired or are
stolen.

When used with the Phaos SSLava™
Toolkit for secure transport, the J/CA Certi-
fication Toolkit gives developers a plat-
form-independent, end-to-end solution for
Internet security, including encryption,
transport and authentication.

Phaos Technology delivers electronic
commerce and security solutions for the
Internet, including a complete suite of secu-
rity toolkits for the Java platform. For more
information, e-mail JCA@phaos.com or see
their Web site at www.Phaos.com.

Rational Software Announces
Visual Quantify for VB and
Windows CE
(Las Vegas, NV) - Rational Software has
announced the availability of Visual Quanti-
fy 4.0, a performance profiler that automat-
ically pinpoints performance bottlenecks,
extending the automatic performance pro-
filing capabilities it has for Visual C++ and
Java applications to Basic and Windows CE-
based applications.

Visual Quantify 4.0 for Visual C++ for
Visual C++, Java, Visual Basic and Windows
CE is a scalable performance-profiling tool
that helps developers create high-perfor-
mance embedded and business enterprise
software applications. It automatically iden-
tifies and pinpoints an application’s perfor-
mance bottlenecks and displays the perfor-
mance data in an easy-to-read graphical for-
mat called the Quantify’s Call Graph. This
enables developers to focus on those parts
of an application that will have the greatest
impact on performance.

The patented Object Code Insertion
(OCI) technology provides performance
data for all parts of an applications, includ-
ing components with or without source
code. The PowerTune feature allows devel-
opers to specify, on a case-by-case basis,
the amount of performance data to collect
and the level of analysis to conduct. It also
saves time by allowing developers to
bypass the system-level data and go direct-
ly to the code through the annotated
source.

Visual Quantify locates performance
bottlenecks in applications built with

JAVA NEWS

65VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Microsoft VB, Visual C++, applications run
using the Microsoft Java Virtual Machine
and Visual C++ applications in Windows CE
Emulation Mode on the Windows NT plat-
form It requires an Intel, 486 or Pentium
processor and supports Windows NT (ver-
sions 3.5-4.0), Visual Basic 5.0 and Visual
C++ (versions 2.2 - 5.0) and is available now.
US pricing is $748 per 1-year subscription
(including upgrades and support for one
year).

For more information, call 800 728-1212,
e-mail info@rational.com or visit their Web
site at www.rational.com.

Cosmo Software Brings Cosmo
Code to Win 95/NT Platforms
(New York, NY) - Cosmo Software, a Silicon
Graphics company, has announced the
availability of Cosmo™ Code 2.5, an award-
winning, professional Java™ development
environment for the Windows® 95 and Win-
dows NT® 4.0 platforms. Cosmo Code 2.5,
which features integated tools for develop-
ing, debugging and delivering applications,
allows professional Java programmers to
create media-rich applications.

Designed as an integrated set of visual
tools for creating Java applications,
applets and classes, Cosmo Code 2.5 offers
a powerful and proven code base for easy
and intuitive programming. The seamless
integration between Cosmo Code’s differ-
ent components helps facilitate creation of
sophisticated, cross-platform applica-
tions.

Cosmo Code 2.5 is shipping now and is
competitively priced at $329. For more
information, call 888 91-COSMO or visit
their Web site at cosmo.sgi.com.

Sun and Visigenic Software
Transition NEO Customers to
Visigenic’s ORB Technology
(San Mateo, CA) - Visigenic Software, Inc.,
the leading supplier of object request bro-
ker (ORB) technology, has announced a
migration services agreement to transition
users of Sun Microsystems’ NEO technolo-
gy who require multi-platform or middle-
ware support to Visigenic’s VisiBroker for
Java and VisiBroker for C++ technology. To
meet the unique, mission-critical needs of
these users, Sun Microsystems and Visi-
genic will be providing consulting as well as
documentation that maps key NEO features
to VisiBroker features in order to stream-
line the transition between ORBs. Effective
immediately, Visigenic will market and sell

the VisiBroker ORB to established sun
Microsystems customers.

Sun Microsystems and Visigenic will
offer existing NEO customers a portabili-
ty/migration map, specialized consulting
services and product discounts on Visi-
genic’s ORB products. IIOP is an object
messaging protocol for communication
between network-based client/server soft-
ware programs and enterprise applications
based on CORBA standards.

For more information on both companies,
see their Web sites at www.visigenic.com and
www.sun.com.

ILOG JViews Chosen for HP
OpenView Java User Interface
(Mountain View, CA) - ILOG S.A., a leading
supplier of advanced software components,
has announced that Hewlett-Packard Com-
pany will use ILOG JViews™ to develop a
Java™-based user interface for HP Open-
View network and systems management
software.

HP plans to use ILOG JViews to broaden
its support of the Internet for its OpenView
family of network and systems management
products. ILOG JViews’ Web-based
functionality will extend HP Open-
View software’s reach within
large enterprise information sys-
tems.

ILOG JViews is well suited to
the needs of the telecommunica-
tions market because of the
product’s scalability and
robustness under load. For
the first time, Java develop-
ers will be able to harness
the power of quadtree algo-
rithms and other graphics
optimizations that facilitate real
time displays with thousands of
objects.

For more information, see their Web site
at www.ilog.com.

Build Multithreaded Apps with
O’Reilly’s “Win32 Multithread-
ed Programming”
(Sebastopol, CA) - Multithreading, avail-
able for personal computers with the
advent of Win32 operating systems, pre-
sents Windows programmers with both
increased capabilities and challenges.
O’Reilly & Associates’ new book, “Win 32
Multithreaded Programming”, gives pro-
grammers the knowledge they need to
skillfully construct efficient and complex

multithreaded applications.
“Win32 Multithreaded Programming” by

Aaron Cohen and Mike Woodring explains
the concepts of multithreaded programs,
from basic thread synchronization using
mutexes and semaphores, to advanced top-
ics like creating reusable thread pools or
implementing a deferred processing queue.
It illustrates these principles with real-
world applications and carefully construct-
ed examples and shows readers how to
take full advantage of Win32’s multithread-
ing capabilities.

The CD-ROM accompanying the book
features Mcl, the authors’ C++ class library
for multithreaded programming, which
both wraps multithreaded API functions
and easily supports more complex multi-
threaded scenarios. for programmers using
MFC, an additional library, Mc14Mfc, is
included for MFC compatibility.

For more information, see the O’Reilly
Web site at www.oreilly.com.

Reliable Software Technologies
Releases Java Assurance Tools
for Free download

(Sterling, VA) - Reliable Software Tech-
nologies Corp. has released two new

products for testing Java™ applica-
tions: AssertMate™ Version 1.0
pre-release and TotalMetric™ Ver-

sion 1.0 Pre-release.
AssertMate is a system that

aids Java engineers in safely
and accurately placing soft-

ware assertions within their
Java programs. Software
assertions assist in finding

bugs earlier in the develop-
ment process (when they are

easier and cheaper to fix). Until now,
assertions were missing from the Java

development environment.
TotalMetric for Java is the world’s first

commercial software metrics tool to calcu-
late and display cyclomatic complexity,
level-of-effort and object-oriented metrics
for the Java language.

RST’s goal is to make it simple for devel-
opers to rigorously test their code as early in
development as possible, without intrusion
on their normal productions. Both Assert-
Mate and TotalMetric are available for free
download from RST’s Web site for a limited
time at www.rstcorp.com/tools.html. Infor-
mation on RST’s other tools can be found at
www.rstcorp.com. You can also reach them
by phone at 703 404-9293.

JAVA NEWS

66 • VOLUME: 3 ISSUE: 2Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

OK, so I’m a couple of weeks late on the
New Year. Hey, I am using a Java-powered
watch, so what do you expect? Maybe when
the watch gets a JIT, I can get the correct
time and date.

Went out for a couple of drinks last night
to my hang-out in The Valley... the Bucket-O-
Bits. In its past life, this sleazy dive was the
high-brow Ely McFly’s, the center of every-
thing cool about Silicon Valley. Ely’s was
next door to Apple and near a
dozen start-ups. Hot marketing
managers would stand in line,
gold AMEX card in hand, for
the honor of buying the house
a round of drinks. I drank good
gin at Ely’s. Enough to kill a
normal man; but of
course, old Joe isn’t
normal. I am a survivor.

The crowd wasn't
there, yet. Just Joe,
working on his second
gin and tonic, sitting at
the bar, thinking about the
past year, pondering the
upcoming year.

Each year brings new tech-
nologies, new opportunities
and fresh inventories of failed
products into the local surplus
stores here in The Valley. Old Joe
keeps his perspective by regularly visiting
such stores as Haltek and Weird Stuff. In
those places, staring at me, are pallets full
of products that some engineers designed
on the usual rush schedules, some mar-
keting guys promoted even though they
were way underpowered and six months
late and some sales guys sold even though
the customers didn't think they wanted
them.

That software I worked through Christ-
mas one year to get into distribution? Over
in the “$5 and less” bin. The Digital Video
cards that needed superhuman ASIC devel-
opment schedules to make it in time for
MacWorld? Look in the “Free! Just haul
them out of here” section. Go to places
such as Haltek and Weird Stuff. Look around
there, soak it up. It keeps you humble. I see
lots of engineers walking around in these
places, thinking. But there are few market-
ing or sales people. They move on, quickly.
I think there is a message in it all. Try to do
good stuff, but don't leave any of your

blood where you work. It isn't worth it.
Sometimes, the planets line up and the

product is a hit. Most of the time, some-
thing happens. Apple was a hit, Fortune
Systems wasn't. Small changes at any time
could have reversed the order. As the bot-
tom of the glass is fast approaching, I hold
the hope that some history can repeat
itself. The project that renewed the spark in
a dying company, remember? Yea, Joe was
there, in the middle of it all. Things were

bad, and over one too many
beers, a sales guy gave you an
idea. Suddenly, a team was
born, a goal was set and the

freight train was in
motion.

Running on all
cylinders, the pro-
ject came together.

Your software worked
in beta, the ASIC worked
on the first spin. The

marketing guy, who
you thought was

worthless, became bril-
liant in his pitch to PC

Week. At an otherwise
dull Comdex, people were

talking about your product.
Your booth is packed for all

five days. Suddenly, the sup-
ply-base manager is having fits,

trying to get enough parts. The sales guys
are stuffing the channel full of the new prod-
uct, and selling through the junk in invento-
ry as well. The Western Region is 150% of
quota. The stock blows through $10 and
hits $18 in a month. Higher than it had been
since the IPO days. Your stock options are
in the money. This year, you can go to
Europe instead of Santa Cruz. The president
of the company buys everyone on the team
a weekend at a spa in Napa. Life is good.

It happens sometimes. When it doesn’t,
your labor of love ends up in the bargain
bin at Weird Stuff.

Round three of the gin and tonic is head-
ing my way. People are starting to show up
in this dump, and they are a lot younger
than old Joe. The Bucket-O-Bits is their
Ely’s. They will toast the success or lament
the failure of their year’s work.

New year is here. Look back quickly.
Order a round of drinks and toast to new
hopes. Such is life in The Valley.

New Year’s Revelations

by Joe S. Valley

Joe S. Valley is a scarred veteran of the Silicon Valley
wars. It was either writing this column or heading
back into therapy. His company can't afford mental
health care coverage anymore, so writing is the only
option. There are a million stories in the Valley and
Joe knows lots of them. Got a good story? E-mail him
at Joe@sys-con.com

THE GRIND

“Just Joe with his

cheap gin sitting at

the bar, thinking

about the past

year, pondering the

upcoming year”

Joe@sys-con.com

http://www.JavaDevelopersJournal.com 67Java DEVELOPER’S JournalVOLUME:1 ISSUE: 5 •

JavaWorld
Ad

68 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

KL Group
Full Page Ad

• VOLUME: 3 ISSUE: 2

